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ABSTRACT Technological innovation depends on knowledge developed by scientific research.
The number of citations made in patents to the scientific literature has been suggested as an
indicator of this process of transfer of knowledge from science to technology. We provide an
intersectoral insight into this indicator, by breaking down patent citations into a sector-to-sector
matrix of knowledge flows. We then propose a method to analyze this matrix and construct
various indicators of science intensity of sectors, and the pervasiveness of knowledge flows. Our
results indicate that the traditional measure of the number of citations to science literature per
patent captures important aspects of intersectoral knowledge flows, but that other aspects are not
captured. In particular, we show that high science intensity implies that sectors are net suppliers
of knowledge in the economic sector, but that science intensity does not say much about
pervasiveness of either knowledge use or knowledge supply by sectors. We argue that these
results are related to the specific and specialized nature of knowledge.

KEY WORDS: Knowledge input–output analysis, knowledge flow matrices, science-to-technology
transfer

1. Introduction

Technological change results in largest part from investments, such as R&D, by commer-

cial firms. Among the inputs that firms use to produce technological knowledge is knowl-

edge generated in the ‘science’ sector, e.g. from universities and public research

organizations. The interaction between the (public) science sector and the (private) firm

sector is seen as an important determinant of the technological competitiveness of

firms and, at a higher aggregation level, regions and countries. For example, it is an
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often-held policy view that an important reason why Europe lags behind the United States

in terms of technological performance, is that the interaction between the science and tech-

nology spheres is less developed in Europe than in the United States (Dosi et al., 2006,

summarize this argument and discuss it critically).

Knowledge flows, or interaction in a more general sense, between science and technol-

ogy takes many different forms, each associated with specific channels and types of

knowledge (Cohen et al., 2002). For example, knowledge may be transferred by means

of personal contacts at conferences and workshops, or by mobility (change of jobs) of

researchers, by (graduate) students, by joint research projects, or by publication channels

such as scientific articles and patents. With regard to the relative importance of these chan-

nels or sources, Cohen et al. (2002, p. 14), reporting on the outcome of a survey among

R&D managers in US firms, conclude that ‘publications/reports are the dominant

channel, with 41% of respondents rating them as at least moderately important’.

One way of quantifying the impact of the ‘publication channel’ on technology develop-

ment is through the use of citations by patents to scientific publications (Narin et al.,

1997). This makes use of the need for patents to cite the ‘state-of-the-art’ with regard

to the invention described in the patent. An important part of this state-of-the-art is pro-

vided by means of citations, either to other patents or to so-called non-patent literature.

The latter often are citations to scientific articles or handbooks. Narin et al. (1997)

count the frequency of such non-patent literature citations, and trace the nature and geo-

graphical origin of the cited works. They conclude that the ‘science intensity’ of patents

has increased over time, as evidenced by a rise in the average number of citations to

science in a single patent, that the nature of the citation links is often geographically

biased (patents tend to cite science from the same country), and that there are substantial

differences between technology fields with regard to science intensity.

The number of ‘science references’ per patent has now become a standard way of quan-

tifying the impact of science on technology (e.g. Hicks et al., 2001; Leydesdorff, 2004;

Tamada et al., 2006). Meyer (2002, p. 197) classifies citation analysis as one of the

three available methods for quantifying the science–technology link (the other two

methods are looking at industrial science publications and university patenting), and

argues that it is the most widely used of the three (Meyer, 2002, p. 197).

The use of citation analysis to measure the science–technology linkage is, to our knowl-

edge, limited to the use of citations in patents to non-patent literature. Citations in patents

to other patents are sometimes used as a frame of reference (e.g. benchmark the average

number of citations to non-patent literature against the average number of citations to

patents), but what is usually disregarded is the second- and higher-order effects that

may occur when citations to non-patent literature propagate forward when the patent

that makes the citation to science is cited by other patents. It is our aim in this paper to

provide a method of analyzing this citation process, taking account of ‘direct’ citations,

as well as the ‘indirect’ effects that occur as a result of the forward propagation described

above. In other words, our aim is to provide a method that provides a more complete

impression of the science–technology linkages than is traditionally obtained by only

looking at ‘direct’ citations.

Our proposed method draws inspiration from existing literature that uses patent cita-

tions to study technological interdependence between economic sectors. This issue has

been addressed in the economic literature by studying so-called technology flow matrices

(e.g. Scherer, 1982; Johnson and Evenson, 1997; Verspagen, 1997; Los, 1999). Usually,
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these are used to construct measures of so-called ‘indirect R&D’ (i.e. technology

spillovers), and to relate this to productivity growth. We introduce citations to non-

patent literature in such technology-flow matrices, and utilize a number of methods that

are broadly known in input–output analysis (Miller and Blair, 1985) in order to quantify

the influence of science on different economic sectors.

We start our discussion, in Section 2, with a general conceptual framework of how tech-

nology flows operate. This sets the general context of our theoretical approach, and links it

to an observable database (i.e. patent citations). Section 3 discusses the general nature of

our database, and the way in which patent citations can be interpreted as indicators of tech-

nology flows. In Section 4, we provide a formal theoretical framework for assessing the

science–technology linkages at the sectoral level. Our approach is based on an aggrega-

tion of the citations data and an analytical abstraction that draws inspiration from input–

output economics. Section 5 presents the empirical indicators that we derive from the

methodology. In Section 6, we present the results. Finally, in Section 7, we summarize

the argument and conclude.

2. A Graph-theoretic View of Technological Change

The aim of our analysis is to build a theoretical model of the flows of ideas in the inventive

process. Invention, or innovation more broadly, can be seen as a process that takes labor,

capital and prior knowledge as inputs, and produces new knowledge. We limit ourselves

here to the part of this process in which prior knowledge contributes to the development of

new knowledge, and hence we do not consider the role of capital and labor in the inventive

process. Our perspective is based on the idea of a network graph, in which new ideas

(patents) are drawn from previous ideas (patents or pieces of scientific knowledge). We

will use patent citations to indicate the relationships between ideas.

The view of patent citations as a network graph rests on five assumptions: (i) the com-

plete knowledge domain can be divided into two broad categories, science and technology;

(ii) within each of these two broad categories, knowledge can further be distinguished into

different types or fields (e.g. electronics and mechanical engineering in technology, and

physics and biology in science); (iii) we can usefully analyze the technology part of the

system without considering its inputs back into the science part;1 (iv) knowledge is cumu-

lative: prior (accumulated) knowledge embedded in a set of patents, is propagated forward

if this patent is cited; (v) on average, the magnitude of the knowledge transmitted forward

by a single citation is constant across citations.

Our notion of a network of ideas is illustrated in a stylized example in Figure 1, which

displays a network of knowledge flows (patent citations). The nodes in this network (the

squares, circles and triangles) represent pieces of knowledge (ideas), and the arrows con-

necting them illustrate the cumulative relations between the ideas. Thus, for example, idea

A4 is an input into idea A2, which in turn is an input into idea A1. The different types of

knowledge are represented by different symbols (Type A by a circle, Type B by a square,

and Type S by a triangle). Type S represents ideas that are in the realm of science, and,

according to assumption (iii) do not have any inputs from the other two types of ideas.

These types, A and B, represent different fields in technology.

Relations between fields are selective and specific, i.e. some types of relations are more

frequent than others. For example, in Figure 1 the composition of inputs into Type A ideas

is different from those into type B ideas. Idea A1 takes as input two ideas of Type A (i.e.
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from its own field), one idea of Type B, and two ideas from science. Idea B1 takes as inputs

one idea of Type A, one of Type B and one from science.

The issue that interests us is whether some types of technology have a higher depen-

dence on, or input from science, than other types of technology. Traditionally, (e.g.

Narin et al., 1997) this is measured by the number of citations to science, per patent. In

terms of the network, this means that the number of incoming links from triangles is

counted. But the diagram clearly brings out that there are also indirect inputs from

science. For example, the impact of idea S5 is immediate in the development of idea

A3, but A3 in turn leads to A1, A2 and B1. Hence, S5 is ‘embodied’ somehow in four

ideas in the technology realm, something that its shares with idea S6. Conversely, when

we look at idea A1, it builds directly on S1 and S2, and indirectly on all other science

ideas (S3–S8). The ideas of Type B generally show a much lower number of science

ideas embodied in them. Note also that these indirect relations span over the borders of

technology sectors, i.e. the science ideas S7 and S8 flow into sector B patents and will

eventually also flow into ideas of sector A, and similarly the science ideas S5 and S6

also reach both sectors.

In order to assess the ‘science content’ of technology fields, or sectors, we need a map of

the actual network. As we will explain in detail below, our approach will be to construct

such a stylized map on the basis of patent citation data. Our empirical implementation

assumes that citations between patents capture the links between ideas of type A and B

Figure 1. Stylized patent-citation network graph
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(technology) in Figure 1, and that citations in patents to non-patent literature capture

inputs from the science realm to the technology realm. We assume that knowledge

flows from the cited patent (or science reference) to the citing patent. Section 3 will provide

a more detailed discussion of the nature of patent citations and how we capture them.

Although patent databases are large (e.g. the main database that we will use has approxi-

mately 1.6 million patents), modern computers allow us to analyze the actual citation

network graph that results from this, and hence we would be able to make direct obser-

vations based on such a micro-account. However, this suffers from particular limitations

in the available data, related to the fact that the actual databases that we have are truncated

in various ways, and hence that we can only observe particular sub-parts of the whole

knowledge flows network. Two types of truncation are relevant: in time and between

patent systems.

With regard to time-truncation, we have left- and right-truncation. With right-trunca-

tion, the problem is that we can only observe patent citations up to the most recently pub-

lished patent. For this patent, we know where its (direct) inputs came from (what it cited),

but we do not know into which other patents (ideas) it will become an input. In Figure 1,

ideas A1 and B1 are examples of right truncation. Left-truncation in time results from the

fact that patents and patent citations were not recorded from the beginning. For example,

our patent data start in 1979, and no citations to patents prior to this year are available. In

Figure 1, ideas B3, A4 and A5 are examples of this. We observe the patents that cite these

patents, but we do not observe what they cite themselves, and we cannot be sure that there

are no other patents (published before the left truncation) that cite these patents.

An additional truncation problem occurs because patents can be filed under different

national or international patent systems (associated with different patent offices, e.g. the

European Patent Office (EPO), the US Patent and Trademark Office (USPTO), or other

national patent offices). In the example of Figure 1, it may be the case that patents A1

and B2 are filed with the USPTO, and the other patents are filed with the EPO. In

reality, such citations between the different patent systems are frequent.2 The truncation

problem arises because we have only information on patent characteristics of patents of

a single patent system (the EPO), and we lack complete information on patents in the

other systems. Thus, in terms of Figure 1, if patents A1 and B2 are indeed outside the

EPO system, we do not have specific information on them (e.g. we do not know their

field of origin). Obviously, this distorts our picture since, for example, we cannot

observe where one of the inputs into A2 comes from, or where A2 sends one of its outputs.

In order to avoid these truncation problems, we implement a more aggregate (sector-

level) approach to mapping the knowledge flows network. This essentially consists of

constructing for a single point in time a set of probabilities that a knowledge flow emerges

between two sectors, and assuming that these probabilities are constant in time, so that we

can extrapolate them (we will test for the assumption of constant probabilities). This

approach is based on the methods developed in input–output economics. In short, we

avoid the truncation problems by sampling the data rather than summing it up. The

sample is based on a particular generation of patents and their backward linkages (cita-

tions). We define such a generation of patents as all patents belonging to a particular

year. The network representation that we build (described in Section 4) is based only

on the direct citation inputs into this generation of patents, but it assumes that the indirect

inputs (i.e. the citations made by the cited patents) can usefully be described by the same

probabilities as observed in the single generation.
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3. Patent Citations: Measurement and Interpretation

We have already briefly discussed how we will use patent citations as a representation of

the flows in our technology network (Figure 1). Although the use of patent citations has by

now become quite widespread in the literature (see, for example, the overview of contri-

butions in Jaffe and Trajtenberg, 2002), there are certain problems with this particular

interpretation. Before we actually proceed to develop a theoretical framework and use it

for empirical analysis, we briefly discuss these issues here.

Central in our approach is the notion of a patent citation. But, of course, patent citations

were not introduced to facilitate the economic analysis of science and technology. Instead,

the (legal) purpose of the patent citations is to indicate which parts of the described knowl-

edge are claimed in the patent, and which parts other patents have claimed earlier. From an

economic point of view, however, the assumption is that a reference to a previous patent

indicates that the knowledge in the latter patent was in some way related to the new knowl-

edge described in the citing patent.

Authors like Jaffe et al. (1993) and Maurseth and Verspagen (2002) have argued that the

citation link can be interpreted as a knowledge spillover, i.e. an externality for the citing

party. However, we are not specifically interested in the notion of knowledge spillovers,

but instead in the broader notion of technology flows (i.e. flows irrespective of whether

they represent and externality in the economic sense), and hence accept patent citations

as a broad indicator of knowledge relatedness and flows.

We will use only citations between European patents (including international patents

under the PCT system filed through EPO), i.e. we will only consider patent citations

where both the citing and cited patent are applied for at the EPO. Besides a practical

reason (we do not have information on patents in systems other than the US and EPO

systems), there is also a more fundamental reason to limit our citations information to

the EPO patents. This is the fact that there are major differences between citation practices

at the two patent offices. In the USPTO system, the applicant – when filing a patent appli-

cation – is requested to supply a complete list of references to patents and non-patent

documents that describe the state-of-the-art of knowledge in the field. In the EPO

system, the applicant may optionally supply such a list. In other words, while in the US

there is a legal requirement, and non-compliance by the patent applicant can lead to sub-

sequent revocation of the patent, in Europe it is not obligatory. As a result, applicants to

the USPTO

rather than running the risk of filing an incomplete list of references, tend to quote

each and every reference even if it is only remotely related to what is to be patented.

Since most US examiners apparently do not bother to limit the applicants’ initial

citations to those references which are really relevant in respect of patentability,

this initial list tends to appear in unmodified form on the front page of most US

patents. (Michel and Bettels, 2001, p. 192)

This tendency is confirmed by the number of citations that on average appear on USPTO

patents. Michel and Bettels report that US patents cite about three times as many patent

references and three and a half times as many non-patent references compared with

European patents. Thus, our strategy of using only EPO citations implies that we take a

more conservative view of knowledge flows.
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In more specific terms, we use data from European patent applications3 to analyze

technology flows. Our data are extracted from the Bulletin CDROM issued by the

European Patent Office, and from the REFI-dataset supplied to us on DVD by the EPO.

The Bulletin dataset supplies us with the date of each individual patent, countries of resi-

dence of its inventors, and the technology class (International Patent Class, IPC) assigned

to it by the patent examiner. We use the priority date of the patent (which is the date at

which the knowledge in the patent was first patented, worldwide) to assign it to a year

(when priority date is missing, we assume the patent was first applied at the EPO, and

hence use the EPO application date).

We also utilize a database supplied by the OECD covering the phenomenon of inter-

national patent families. In this context, the term ‘patent family’ is used to describe a

set of patents filed under different patent systems (e.g. EPO, USPTO), but covering the

same invention. The OECD database that we use (Webb et al., 2004) provides a list of

so-called equivalent patent numbers (e.g. EPO patent 1234567 is equivalent to USPTO

patent 7654321). This database is updated using data from the Espacenet webserver,

which uses the same raw database as was used to construct the OECD database.

The REFI-dataset that is the source for our citations data also contains citations made in

patent systems other than the EPO. The start of our citations database is a list of citing and

cited patents (a so-called citation pair), covering a range of patent systems including the

EPO. From this list, we identify the citation pairs in which the citing patent is either an

EPO patent, or where the citing patent is found by our patent families database to be equiv-

alent to an EPO patent. In the latter case, we substitute the original (non-EPO) citing patent

by the equivalent EPO patent. Thus, we have, as an intermediate result, a list of citation

pairs where all citing patents are EPO patents. We then select the subset of this list

where also the cited patent is an EPO patent, or where the cited patent has an EPO equiv-

alent. The final citation database, used in the analysis below, is then a list of approximately

1.64 million citation pairs, involving approximately the same number of EPO patents.

Obviously, related to the inter-industry point of view that we take, the assignment of a

patent to an (economic) industry (sector) is crucial. We use the Merit IPC-Isic concor-

dance table (Van Moergastel et al., 1994) to make this assignment. This concordance

table is based on a detailed comparison of the content of the IPC and Isic (rev. 2) classi-

fication schemes, and a matching of the activities described in both. The principle of the

matching is that the patent is assigned to its most likely industry of origin (e.g. a textiles

machine is assigned to the machinery sector, not the textiles sector). The concordance is

done at the 4-digit IPC level, and a mixture of 2-, 3- and 4-digit Isic industries (these will

be introduced below when we discuss the data). We use only the manufacturing sectors in

the concordance, and opt to aggregate the 22 sectors found in the concordance to 19. The

concordance allows the assignment of a single IPC class to multiple Isic industries, based

on a weighting scheme. This implies that patents are assigned fractionally, i.e. we do not

necessarily have an integer number of patents in each industry.

4. Approximating the Knowledge Flow Network by Input–Output Methods

We now set out the procedure by which we construct a knowledge flow table, or citations

flow table, which resembles an economic input–output table. This enables us to draw upon

a number of established methods from input–output economics to analyze knowledge

flows. The analogy that we propose rests on the idea that a citation can be interpreted
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as a delivery of knowledge (by the cited patent to the citing patent). Furthermore, we

distinguish between intermediate ‘deliveries’ (knowledge flows or citations between

industrial sectors), and deliveries from a primary factor (knowledge flows from the science

sector).

There is one crucial problem in this analogy between input–output economics and the

citations flow system that we propose, relating to the period of observation. In input–

output economics, the period in which we observe production flows (a year) typically cap-

tures a large part of the chain of intermediate deliveries that make up production. For

example, consider the production of a wooden chair in the furniture industry that requires

wood and (metal) screws. The production of wood in turn requires inputs from forestry,

and the metal screws require steel from the steel industry, which requires iron ore from

the mining industry. Moreover, at various stages of production, services from the transport

industry are used. The typical situation is now that we observe a large part of this chain of

deliveries in the time span of a single year. Inputs that we do not observe being produced

within the single year, like hammers and other tools, are treated as primary inputs (capital).

In our citations flow system, however, the typical time lags are much longer than what is

observed in a production system (the typical citation lag is several years). In terms of the

example, we observe the producer of the wooden chair obtain the wood and metal screws,

but we do not observe the delivery of the steel that goes into the screws, nor the trees that

make up the wood. These deliveries were made earlier, before we were able to observe

them. Note that we do observe some deliveries of steel to the screw-making industry,

but these are associated with future deliveries of screws to other sectors. Because pro-

duction scale generally varies over time, interpreting these flows as associated with the

current amount of screws used in furniture making would be wrong, and lead to a

biased view of the intermediate flows.

The way out of this problem is to assume fixed coefficients. Thus, we may use the

currently observed input coefficient of steel for the production of screws to derive

the amount of steel that was ‘indirectly’ necessary to produce the wooden chairs that

we observe in the current period. In this way, we need to construct a citations flow

table, rather than actually observing it directly.

Thus, on the basis of data on citations made by patents of a given year t, plus an analyti-

cal framework (explained below), we construct an input–output table that describes

the gradual knowledge accumulation process that has taken place in the time interval

[-1, t]. Table 2 (later, at the end of this section) fully describes the construction of this

table. In a second stage (i.e. the next section) we will describe our various indicators on

science intensity and pervasiveness of knowledge flows, all of which are based on the

constructed knowledge flow table (input–output table). Some of these indicators (such

as the multipliers) are in the standard toolkit of the input–output economics, while

some are custom-built by us in order to shed further insights on the intersectoral pervasive-

ness of knowledge flows.

Before we start, let us make a note on the matrix notation necessary to construct the cita-

tions flow table. A square matrix (of size n � n, where n is the number of industries) will

be indicated by a boldface and capitalized letter as in X, a column vector (of size n) by a

boldface small letter as in x, and a row vector as x0, where a prime stands for transposition.

We refer to individual elements of matrices by small letters with two subscripts (i.e. xij

stands for the ith row jth column element of matrix X), while elements of vectors will

be referred to by small letters with a single subscript (xi stands for the ith element of
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the vector x). The format x̂ will be used to indicate a diagonal matrix (of size n � n)

constructed from the vector x, which has xi at its ith diagonal and zeros elsewhere.

Finally, i (i0) refers to the column (row) summation vector (i.e. i0 ¼ [1, 1, 1, . . ., 1]).

In constructing a knowledge flow table in raw form, we start at the patent citation level.

For each of our citation pairs, we have information on the industries of the citing and cited

patents. Furthermore, patents are also classified according to the year of the priority date.

We follow the usual approach in the literature by constructing a citation flow matrix CPL

(we will omit time superscripts in our matrix notation, but all matrices refer to a specific

year, unless otherwise indicated in the text) for year t, where t refers to the priority (inven-

tion) year of the citing patent (the patent that receives the knowledge flow). The rows and

columns in the citation matrix represent industries of origin of the cited (row) and citing

(column) patent. A column of this matrix will break down the citations made by industry j

patents of year t (cj
t) into nþ 1 (where n is the number of industries) categories, such that

ct
j ¼ cnplt

j þ cplt
1j þ cplt

2j þ :::þ cplt
nj, (1)

where cnplj
t stands for the number of citations to non-patent literature made by year t,

industry j patents4 and cplij
t for the number of citations to patents originating in industry

i, made by year t, industry j patents. The number cnplj
t, usually scaled by the number of

patents in industry j, year t is what Narin et al. (1997) used as an indicator of the

science intensity of industry j patents. However, from an input–output perspective, this

is hardly a satisfactory measure, since it only captures the direct citations to science

that industry j makes.

As in input–output economics, let us express the numbers of citations to various entities

in terms of input coefficients. The share of year t citations to the science sector (i.e. the

non-patent literature) in all year t citations of industry j is defined as vt
j ; cnplt

j=c
t
j, and

the share of year t citations of industry j patents to industry i patents is at
ij ; cplt

ij=c
t
j.

Thus, vt
j þ Sia

t
ij ¼ 1 by definition.

The patents that are cited by year t patents also carry some science content due to their

direct citations to the non-patent literature. Considering this indirect effect, it is clear that

the science content in year t patents is higher than just vt
j ; cnplt

j=c
t
j. This indirect effect

continues backwards in time ad infinitum because every generation of patents cites another

older generation of patents, as well as science directly. Under the assumption (used

throughout the paper) that the input coefficients (a and v) are constant over time, one

can calculate the total (i.e. direct plus indirect) science content accumulated in year t

patents by backward summation over the time horizon [-1, t].

Figure 2 represents a stylized example of a chain of citations that is described by the

system as introduced so far. The circles represent two industries, distinguished by the

colors dark grey and light grey. The squares represent the science sector. The knowledge

from the science sector is further broken down into two types of science inputs, black and

white, based on the sector that they feed into. Thus, scientific knowledge is broken down

into industry-specific categories. The citations of the patents of the light grey industry

bring in only the white type of scientific knowledge and those of the dark grey industry

bring in only the black type of scientific knowledge. The arrows represent citations

between the different units (industries and the science sector), and the numbers indicate

the number of citations made on a particular link.
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Assume that we observe a subset of these observations, i.e. the ones made by ‘gener-

ation 0’ patents (this is the rightmost set of patents). These ‘actually-observed’ citations

are indicated by a bold and italic font in the diagram. Thus, we see that for generation

t ¼ 0, the light grey sector makes a total of six citations (incoming arrows), of which

three are to patents of the dark grey sector, one is to patents of the light grey sector

itself, and two are to science references. The dark grey sector makes a total of nine cita-

tions, of which six are to the dark grey sector itself, two are to patents of the light grey

sector, and one is to the science sector. These figures can be used to calculate the input

coefficients (the as and vs) which set up the specific realizations of A and v0 as given in

Table 1.

Figure 2. Stylized citation network graph used to illustrate formal approach

Table 1. Input coefficients

Light grey Dark grey

A Light grey 1/6
2/9

Dark grey 3/6 ¼
1/2

6/9 ¼
2/3

v0 Science 2/6 ¼
1/3

1/9
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Under the assumption of a fixed A and v prior to generation 0, and the assumption that

total knowledge that flows into each circular node of the diagram is equal to total knowl-

edge that flows out from that node, we can ‘estimate’ the number of citations that must

theoretically be present on the other arrows in the figure (prior to generation 0). These

numbers are indicated in the diagram in non-bold and non-italics type. As an example,

let us see how this works for citations made by generation –1, i.e. the numbers that are

underlined in the diagram. It was already observed that a total of three citations leave

the light grey sector at generation –1 (output), and this must be matched by an equal

input. Of this total input of three, (vlight ¼
1/3) � 3 ¼ 1 comes from the science sector,

(adark,light ¼
1/2) � 3 ¼ 3/2 comes from the dark grey sector, and (alight,light ¼

1/6) � 3

¼ 1/2 comes from the light grey sector itself (1þ 3/2þ
1/2 ¼ 3). In this way, all

remaining links in the diagram have been filled in.

The interest of the analysis is in finding the total, i.e. directly and indirectly, accumu-

lated science content (non-patent literature references) embedded in year t patents of

each other industry j. This corresponds to finding the sum of all values on the arrows orig-

inating from the black (bottom) and white (top) squares (science sector). Obviously, in

order to obtain this total sum, we would have to extend the diagram infinitely to the

left. However, using analytical methods simplifies the process, and we will show below

that the total science content is equal to the total amount of citations made by patents

of generation 0. In the diagram, the sum of direct and indirect science contributions to gen-

eration 0 is equal to 15 ( ¼ 6þ 9).

To show how this fundamental property of the system arises, define the n � n matrix A,
whose elements are the aij

t values. In terms of its interpretation, this matrix is clearly ana-

logous to the input-coefficient matrix of input–output economics, which decomposes the

input requirements of a number of economic sectors over the sectors that supply these

inputs. Let us also construct an n � n diagonal matrix v̂ with elements vj
t on the diagonal

and zero, otherwise.

Clearly, v̂ gives the fraction of ‘direct science content’ embedded in a single patent (per

industry). The first round of indirect science content can be represented by the matrix

product v̂A, which, for industry j, captures both science inputs that entered the system

in industry j itself, and science inputs that entered the system in other industries (depend-

ing on A). Similarly, we can envisage a third round of embedded science, represented by

v̂A2, and a fourth round v̂A3, etc. The complete citation chain, for a single patent, is

described by the following matrix product:

D ¼ v̂(Iþ Aþ A2 þ � � � þ A1) (2)

where I is the (n � n) identity matrix.

The term in brackets is the power series expansion of the Leontief inverse (I 2 A)21,

which is convergent if all column sums of the elements of matrix A are strictly less

than one, and all coefficients are non-negative (both of which are naturally satisfied in

our matrix A). Thus, equation (2) can also be written as:

D ¼ v̂(I� A)�1 (3)

Let us now define the vector s0 ; (Dc)0, where c is the column vector of the cj
t values, i.e.
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c is simply the total citations (to patents and non-patent literature) made by the industries.

s0 represents the total (direct and indirect) science input in citations that has flown into the

system through the various industries, either in year t or prior to that, and transmitted

forward in time through (a long chain of) patent citations. The jth element of s0 represents

total science inputs that was introduced into the system by patents of industry j.

The columns of the matrix D all sum to 1.5 This implies that the sum of the elements of

c is equal to the sum of the elements of s0. Because s0 represents the distribution of the ‘pro-

duction’ of science inputs (non-patent citations), we can conclude that in the formal

system described so far, the total number of citations made by patents in year t is equal

to the total number of science references embodied in these citations, which is what we

set out to show. In other words, if we define an average ‘composite’ citation by the frac-

tions aij and vj (i.e. a composite citation made by industry j cites v science references and

aij patents of industry i), this embodies exactly a single unit of science input.6 Thus, a unit

of ‘pure’ science references is a natural measurement of knowledge in our system.

In terms of the example in Figure 2 (where A is given in Table 1, and c0 ¼ [6,9]), the

actual calculation s0 ; (Dc)0 yields s0 ¼ [8,7]. Hence, our assumption on the time invar-

iance of the input coefficients implies that, throughout the period [-1,t], a total of 8 units

of pure (white/top) science (theoretically) must have been introduced into the system by

the light grey sector, and 7 units of pure (black/bottom) science by the dark grey sector. In

a version of a diagram that would extend infinitely to the left, the sum of flows originating

from the bottom (black) science row would be 7, that from the top (white) 8. Note also that,

indeed, the sum of elements of s is equal to the sum of elements of c (8þ 7 ¼ 6þ 9 ¼ 15).

So far, our perspective has been backward, i.e. we asked how many pure science units

are embodied in the citations made by patents published in year t. For that, we made a

decomposition that took account of the citations made by industries at a given point in

time. Similarly, by taking account of the citations received by the industries, we may

take a forward perspective, asking how much knowledge (in pure science units) is

passed on to future generations. Let us introduce the column vector g to denote this

forward flow of knowledge, where the convention is that the jth element of g denotes

the amount of knowledge passed on by patents of industry j to future generations.

Obviously, we do not observe the citation behavior of future patents (yet), and hence

there is no way in which we can observe g. However, if we also apply our assumption

that at each generation incoming knowledge flows are equal to outgoing knowledge

flows to forward streams, we deduce that c will be equal to g, or, in words, that the

total number of citations that a generation of patents makes (by sector) is also equal to

the amount of knowledge it passes on to future generations of patents. The intuition

behind this is that each generation of patents simply passes on the knowledge it received

from previous generations of patents (by means of patent-to-patent citations), plus the

knowledge it took directly from the science sector. In the case of the example in

Figure 2, the quantities of knowledge passed by generation 0 patents onto future gener-

ation are thus g ¼ [6, 9] which are indicated by the values on the two rightmost arrows.

The cumulative implications of the knowledge accumulation process (which takes place

during the time interval [-1, t]) as described so far can be put together in tabular form as in

Table 2 (the cumulative citations-flow table). Readers who are familiar with the Leontief

economic input–output system may recognize that this citations-flow table is, in many

regards, similar to the economic input–output table, which breaks national accounts

down to the sector level. The matrix F is reminiscent of the matrix of intermediate flows
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of goods between sectors. A crucial difference, however, between our matrix F and a matrix

of intermediate deliveries lies in the time horizon applied to construct these matrices. In

national accounts, the complete chain of intermediate goods flows that lead to a final

product are typically observed within a year. On the other hand, the average lag between

a cited and citing patent is typically several years, implying that a chain of several patent

citations can quickly run over a period of decades. This is why we have to resort to construct-

ing our matrix F for the period - 1 to t, instead of directly observing it in entirety for a fixed

period of time. The construction of F (equations (2) and (3) and the discussion around them)

may seem somewhat tedious, but if one is interested in looking at indirect flows, it is essen-

tial that this procedure is followed, rather using the observed matrix A directly (as many

studies have done, e.g. Johnson and Evenson, 1997; Verspagen, 1997).

Continuing the analogy to input–output economics, science inputs play the role of

primary inputs, and s0 is similar to a value added vector. Finally, g is similar to the invest-

ment part of final demand. Because we have no equivalent of final consumers in our

system, all ‘final demand’ is necessarily carried on to future patents (investment).

Scientific knowledge is brought into the system in a cumulative manner by the non-

patent literature citations, given by the vector s0, is transmitted forward (up to year t)

Table 2. The construction of the citations-flow table
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by the patent citations given by the intermediate flow matrix F, and is finally transmitted to

the future (i.e. post year-t patents) by the final set of g patent citations. Throughout this

process, the total number of (patent-to-patent and patent-to-non-patent literature) citations

made by the sectors are given by the row vector x0, and similarly the total number of cita-

tions received by the sectors is given by the column vector y. Just similar to the equality of

total expenditures to total output in an economic input–output system, in our system

x ¼ y, and similar to the equality of total final demand to total value added, in our

system s0i ¼ i0g.

Going back to the example of Figure 2 for a final time, the reconstruction framework

described in Table 2 yields:

F ¼
4 14

12 42

� �
, x0 ¼ y0 ¼ ½24, 63� and s0 ¼ ½8, 7�

These figures indicate that in the period [-1, t], the patents of the light grey sector must

have made (and also received) a total of 24 citations, while the dark grey sector must have

made (and also received) a total of 63 citations. Out of these 24 (63) citations made by the

light (dark) grey sector, 8 (7) are directed to the science sector. These 8þ 7 ¼ 15 units of

scientific knowledge accumulated in the system during the period [-1, t] have been trans-

mitted to the patents of period t through a total of 4þ 12 ¼ 16 (14þ 42 ¼ 56) patent-

to-patent citations made by the light (dark) grey sector.

5. The Empirical Implementation and Proposed Indicators

In actually constructing the knowledge flow table in its raw form (as represented in

equation (1)), we start at the patent citation level. We represent patent citations as pairs

of citing and cited patents. For each of those pairs, we have information on the sectors

of the citing and cited patents. Denoting the sector of the cited patent by i, and the

sector of the citing patent by j, we record this particular citation as a knowledge flow of

value 1, in the cell (i,j ) of the matrix called CPL.7 We have yearly versions of the

CPL matrix for 1979–2005, where the year refers to the priority date of the citing

patent. Citations to non-patent-literature are entered into the row-vector cpnl0, in the

column i, where i is the sector of the citing patent. Because we look at direct citations

only, the problem of right time-truncation is solved: we always observe all incoming cita-

tion links in a matrix for a particular year.

But this is obviously not the case for left-truncation: any citation to a patent that falls

before the first date for which we have patent information (e.g. sector/IPC class) is not

recorded. Hall et al. (2002, pp. 421–424) show that, in the USPTO database, about half

of all citations to a particular (average) patent are made within a period of 10 years.

For the most recent year for which we can construct a reliable matrix (1999 or 2000),

we can broadly cover cited patents over a 15–20 year time lag. Hence, we can be confident

that the large majority of incoming citations are covered.

The problem of truncation between patent systems is somewhat harder to deal with in a

completely adequate way, although we did correct partially for this by using the (updated)

OECD database of patents equivalents (see above). But we still have the problem that we

do not capture all patent-to-patent citations, while we capture all (direct) citations to the
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non-patent literature. This will bias the value of elements of matrix v̂ upward. We discuss

this problem in more detail in a working paper version of this article,8 where we conclude

that an imperfect correction for this truncation problem is feasible. We have used this cor-

rection method on our data, but choose to report results based on uncorrected data. The

impact of the correction is not large and corrected results are available on request.

5.1. Indicators

Based on the patent flow table, we construct a number of indicators that are aimed at

scoring the sectors in terms of their role in the knowledge transfer system. We discuss

these indicators one by one. Before that, note that our indicators analytically approach

the transfer of knowledge from two (complementary) directions: The forward and the

backward approach. This duality refers to the arrow of time through which knowledge

accumulates. The backward approach looks backwards in time and decomposes already

accumulated knowledge according to its potential sources. The forward approach,

however, decomposes the pure categories of (scientific knowledge) according to where

they are, respectively, eventually delivered. In other words, the backward approach con-

siders the year t patents of each industry as another sink of scientific knowledge and

pursues a decomposition according to the various sources, while the backward approach

considers each industry as a source that brings in scientific knowledge through citations

to science made in the period [21, t] and for each source, traces where (i.e. which indus-

tries) the associated type of knowledge eventually ends up.

Backward multipliers

In input–output economics, backward multipliers capture the general idea that due to the

derived demand for intermediate goods, an increase in demand for one sector will increase

the total gross production of the economy by more than the original increase in demand.

Furthermore, the resulting output increase is not confined to the sector where the original

increase in demand takes place. Backward multipliers are generally calculated as the

column j sum of the so-called Leontief inverse, i.e. i0(I� A)�1. Similarly defined back-

ward multipliers are also useful indicators in our patent citation flows table, although

their interpretation is not quite analogous to input–output economics.

Let the vector lt denote the counterpart of the backward multiplier vector as applied to

the constructed cumulative citation-flows table year t. That is, let

l0t ¼ i0(I� At)
�1 (4)

Given this specification, for each industry j, the backward multiplier ltj indicates the

total number of patent-to-patent citations that is necessary to make one (extra) unit of com-

posite scientific knowledge available in year t patents of industry j, which can, in turn, be

transmitted forward to post-year t patents (of various industries). In terms of Figure 2, the

backward multiplier measures what happens, under constant input-coefficients, if the

rightmost arrow in one of the sectors is increased by one. For this to happen, the value

of science inputs (arrows originating from squares) in the diagram will also have to

increase by a total of one. The backward multiplier measures by how much the value of

the arrows between patents (circles) will have to increase to accommodate this.
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Note that since D ¼ v̂(I� A)�1 as described in equation (3), one can also express the

backward multipliers as l0t ¼ i0v̂�1D, or equivalently as lj ¼ S
N
i¼1dij=vi. This implies

that the backward multipliers are actually the weighted average of the (inverse of the)

share of non-patent literature citations of all sectors, where the set of weights for each

sector j is given by the shares of each sector-specific type of scientific knowledge

embedded in the total knowledge stock of sector j patents.

This illustrates that the backward multipliers are structural indicators that reflect the

idea of vertically integrated sectors, as in Pasinetti (1981), or Sánchez-Chóliz and

Duarte (2003). The citation network structure captured by our patent citations flow

table indicates that, at the industrial aggregate level, only a part of the scientific knowledge

that is eventually transmitted to industry j patents of year t comes from the immediate NPL

citations of this industry itself. Another good deal comes from citations to older patents,

including some of other industries, and this goes back in time ad infinitum. Thus, the total

knowledge embodied in current generation patents is generally a mixture of bits and pieces

of various types of industry-specific knowledge, and the backward multipliers capture this.

Forward multipliers

These multipliers are technically similar to the backward multipliers but they are based on

output coefficients, not on input coefficients. Accordingly, in economics, these multipliers

capture supply-push effects rather than demand-pull effects: the forward multiplier of indus-

try j indicates the increase in total expenditures of the economy that would be caused by a

unit increase in sector j value added. Since the idea of a supply-driven model is originally

introduced by Ghosh (1958), these multipliers are also referred to as the Ghosh multipliers.

Although the direct citation matrix A that we collect from the data does not allow the

calculation of output coefficients, once the cumulative patents citations flow table

(Table 2) is constructed, one can calculate an output coefficient matrix Bt, where

bt
ij ¼ f t

ij=x
t
i. Given this matrix, the vector of forward multipliers is calculated as

gt ¼ (I� Bt)
�1i (5)

In the context of the patent citation network, these forward multipliers have the following

interpretation. For each industry j, the forward multiplier gt,j indicates the total number of cita-

tions that is necessary to transmit 1 (extra) unit of industry j-specific scientific knowledge,

through the citation network, to patents of year t (of potentially a number of different industries).

While backward multipliers are about the process of accumulation of the pool of different

types of knowledge embodied in patents of a given industry, the forward multipliers are

about the process trough which a given type of knowledge is transmitted forward and

distributed over the patents of all industries. This highlights the importance of a conceptual

distinction between the two alternative temporal directions in which one can look at our

cumulative citation flows system (cf. Figure 2). A backward looking approach perceives

the patents of different industries as different sinks. A different composition of a variety

of different types of industry-specific scientific knowledge of different industries eventually

accumulates in each sink, and the backward looking approach considers the composition of

knowledge found in each sink. On the other hand, the forward-looking approach looks at

sources, each of which introduces a different type of industry-specific scientific knowledge

and distributes these forward over the patents of a variety of industries.
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Net science multipliers

The next indicator that we will discuss aims at analyzing the relative strength of the patents

of different industries in terms of their double role in performing as sources and sinks at the

same time. As we will argue, some industries are relatively more active in their role to

perform as sources than they are in performing as sinks and vice versa.

The magnitude gi ( ¼ ci) is the amount of composite scientific knowledge that is

accumulated in industry i patents of year t, which is made available to future (i.e.

post-year t) patents. On the other hand, si is the amount of pure industry i-specific scien-

tific knowledge that is introduced into the patent system by industry i patents during the

time interval [-1, t], and distributed over patents of various industries. gi . si would

indicate that industry i patents are more important as sinks of knowledge than as

sources, and vice versa for si . gi. Therefore, we define a ratio mti, which is the ratio

of scientific knowledge introduced by all industries that eventually ends up in industry

i patents of year t, and the scientific knowledge introduced by industry i that ends up in

all patents of year t. Thus, mti .1 (,1) would indicate that industry i is a net knowledge

supplier (user).

We note that this idea is quite similar to what Oosterhaven and Stelder (2002) call net

multipliers in an economic input–output context. Dietzenbacher (2005) shows that such

net (value added) multipliers give the ratio of value added to final demand. This is

obviously very similar to our source/sink interpretation of knowledge flows. This is

why we call this indicator the net science multiplier indicator. Following Oosterhaven

and Stelder (2003) and Dietzenbacher (2005), we calculate the row vector mt, which is

a vector whose ith element is equal to mj ¼ gi/si, as follows:

m0t ¼ s0x̂�1(I� A)�1ĝŝ�1 (6)

On the basis of Table 2 (i.e. x ¼ (I� A)�1c and s0 ¼ ½v̂(I� A)�1c�0), and also letting L
denote the Leontief inverse (I 2 A)21, it is clear that the element in the jth diagonal of the

inverse matrix x̂21 is 1=SN
j¼1lijcj, whereas the ith element of the row vector s0 is viS

N
j¼1lijcj,

which implies that the term s0x̂�1 ¼ v0. Consequently, given v0(I� A)�1 ¼ i0, the calcu-

lation of mt reduces to

m0t ¼ g0ŝ�1 (7)

Self-reliance of sectors

The matrix D ¼ v̂(I� A)�1 breaks the embedded knowledge in the patents of each sector

down to its sector-specific components. The extent to which a sector relies on scientific

knowledge introduced by itself can be assessed by looking at the weight on the diagonal

of this matrix. The most straightforward way of measuring this is simply

dj ¼ d jj

which we refer to as the self-use of knowledge indicator. It is the share of sector j-specific

knowledge in the composite knowledge mix of sector j patents.

Similar to D, we construct a matrix K that decomposes the knowledge supplied by an

industry i in terms of the industries that use its knowledge. This uses the output coefficient
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matrix Bt as well as the diagonal matrix r̂, which gives the ratio gj/xj (i.e. the share of

citations received by industry j patents of year t in all citations received by industry

j patents of [21, t]) on its jth diagonal. The matrix

K ¼ (I� B)�1r̂ (8)

is then quite similar to D: kij gives the share of the industry i-specific knowledge (intro-

duced and transmitted by industry i patents in [-1, t]) which is eventually transmitted

to industry j patents of year t. Since these are shares, all row sums of K are equal to 1

(Ki ¼ (I� B)�1r ¼ i). Using K, we introduce a similar measure to d, but which

focuses on the knowledge supply of the sectors. This is

kj ¼ kjj

which is the share of sector i-specific scientific knowledge transferred by sector i to itself,

or the self-supply indicator. It is an indicator of how much a sector generates internal

knowledge versus knowledge that is used by other sectors.

Pervasiveness of knowledge suppliers and users

Independently of the amount of knowledge that an industry supplies to the aggregate

system, or the amount that it uses, the distribution of its knowledge supply or

demand over the range of industries is an important indicator. For example, the distri-

bution of knowledge inputs of a certain industry over all industries in the system indi-

cates to which extent that industry is dependent on a small range of industries for its

(ultimate) knowledge inputs. Similarly, the distribution of knowledge supply of an

industry over all industries is an indication of how pervasive knowledge of a particular

industry is.

We may again use the matrix D ¼ v̂(I� A)�1 to construct an indicator for this. We start

by looking at the off-diagonal elements of this matrix (the diagonal elements are captured

in the previous indicator), and consider the column for every sector. For this column, we

calculate an inverse Herfindahl index for industry j as:

hsrc
j ¼

1PN,i=j
i¼1 dij=1� d jj

� �2
(9)

This gives the Herfindahl equivalent number of industries that supply industry j with

various types of industry-specific scientific knowledge, and is an inverse index of concen-

tration of the knowledge sources of industry j. Clearly hj
src – which is our indicator of

knowledge-use pervasiveness – indicates the variety in inter-industrial backward citation

linkages between industry j and all other industries.

Similarly, we construct an inverse Herfindahl indicator for knowledge supply, using the

row-wise, off-diagonal elements of K as follows:

hsnk
j ¼

1PN,i=j
i¼1 kij=1� k jj

� �2
(10)
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hi
snk gives the Herfindahl equivalent number of industries that eventually embed the

industry i-specific knowledge that is introduced and transmitted by industry i patents. It

indicates the variety in inter-industrial forwards citation linkages between industry i and

all other industries, and is a measure of how pervasively industry i influences the other

industries in the system.

6. Empirical Results

Our research question is about the impact of science on technology, and about the insights

that can be gained by our proposed intersectoral approach in comparison to an approach

based on the single indicator of the number of patent-to-science citations per patent.

Owing to the strong time-invariance of our annual data, the indicators based on the inter-

sectoral perspective are also invariant over time. Thus, we present here the results for

1992, which are representative of the other years between 1985 and 2004.9

Table 3 documents the scores of the sectors on the indicators that we presented in the

previous section. The leftmost column gives the ‘direct’ science intensity of the sectors

(number of non-patent citations per patent), which corresponds to the indicator resulting

from an analysis that does not consider intersectoral flows. Given our interest in the

value added of the intersectoral approach, we start our empirical analysis by looking at

the relationship between this indicator and the other indicators, which are specific to the

intersectoral nature of the analysis. The correlation coefficients between the indicators,

documented in Table 4, are useful in making this comparison.

Science citations per patent indicator correlate strongly negatively with backward and

forward multipliers. This is intuitive because the multipliers measure the amount of

patent-to-patent citations that are necessary to pull one additional unit of science knowl-

edge from the past (backward multiplier) or carry forward one additional unit of science

knowledge into the future (forward multiplier). Hence, the focus is on indirect effects

through patent-to-patent citations. The science intensive sectors (those that have a high

number of direct science citations per patent) by definition have a lower reliance on indir-

ect science citations.

On the other hand, the correlation with the net multiplier is strong and positive.

This captures to what extent a sector is a net supplier or user of knowledge. The positive

correlation suggests that highly science intensive sectors are generally responsible for a

larger fraction of the knowledge introduced into the system than the fraction of knowledge

used. In other words, some the knowledge that these sectors introduce into the system is

diffused to other sectors. But high science intensity also correlates positively with high

self-dependence, especially so in terms of using knowledge. This is intuitively plausible

if we accept that scientific knowledge is specific to the sectors in our analysis: if a

sector depends highly on input of scientific knowledge, and if this knowledge is specific,

it will have to rely to an important extent on sourcing this knowledge itself.

The correlation between science intensity and the two pervasiveness indicators is nega-

tive, indicating that science intensive sectors generally tend to be less pervasive. But these

correlations are weaker than those between science intensity and the other indicators. This

indicates that one particularly interesting finding of our intersectoral perspective relates to

pervasiveness. Figure 3 plots the two pervasiveness indicators against each other. There is

a broad positive relation between them, but it is far from perfect. The figure allows us to

broadly classify the sectors in two ways. First, we can observe that there is a dichotomy
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Table 3. Indicator scores of the sectors (definitions are given in the text, all data refer to calculations made with 1992 data)

Sector

Science citations

per patent

Backward

multiplier

Forward

multiplier

Net science

multiplier Self-use Self-supply

Use

pervasiveness

Supply

pervasiveness

Electrical machinery 0.48 4.91 5.05 0.97 0.55 0.56 6.64 8.30
Electronics 1.05 3.39 3.90 1.14 0.78 0.69 5.11 6.65
Chemistry 0.62 4.67 5.17 1.03 0.52 0.50 3.60 8.10
Pharmaceuticals 1.91 2.84 3.98 1.34 0.81 0.61 3.89 4.92
Oil refining 0.18 6.76 6.01 0.43 0.18 0.43 4.62 6.17
Motor vehicles 0.13 9.11 7.38 0.54 0.29 0.53 10.04 7.44
Other transport 0.19 7.71 6.60 0.66 0.29 0.44 10.07 6.47
Ferrous basic metals 0.56 5.00 5.21 1.08 0.47 0.44 8.64 9.24
Non-ferrous basic metals 0.83 4.41 5.11 1.31 0.55 0.42 8.70 9.71
Metal products 0.21 6.76 6.08 0.72 0.29 0.40 10.39 8.32
Instruments 0.61 4.74 4.87 1.00 0.63 0.63 8.05 9.55
Computers and office equipment 0.98 3.61 4.00 1.10 0.74 0.68 4.26 5.71
Other machinery 0.18 6.95 6.14 0.59 0.28 0.47 8.71 10.26
Food products 1.43 3.25 4.34 1.33 0.59 0.44 3.07 6.10
Textiles 0.22 6.75 6.09 0.68 0.21 0.30 7.94 6.57
Rubber and plastic products 0.08 7.80 6.39 0.31 0.09 0.29 9.04 7.65
Stone, clay and glass products 0.53 5.42 5.65 1.16 0.40 0.35 10.03 9.21
Paper and printing 0.36 5.79 5.51 0.82 0.30 0.37 9.18 9.59
Other manufacturing 0.24 6.30 5.62 0.60 0.21 0.35 9.15 9.33
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Table 4. Correlation coefficients between the indicators

Science citations

per pat.

Backward

multiplier

Forward

multiplier

Net science

multiplier Self-use Self-supply

Use

pervasiveness

Supply

pervasiveness

Science citations per pat. 1.00
Backward Multiplier 20.88 1.00
Forward Multiplier 20.85 0.98 1.00
Net science multiplier 0.85 20.89 20.80 1.00
Self-use 0.86 20.88 20.88 0.87 1.00
Self-supply 0.54 20.53 20.60 0.46 0.82 1.00
Use pervasiveness 20.69 0.70 0.71 20.46 20.61 20.52 1.00
Supply pervasiveness 20.46 0.22 0.27 20.10 20.29 20.32 0.61 1.00
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between the sectors in terms of their general level of pervasiveness (both use and supply):

we have a group of sectors on the left bottom of the figure, and one on the right top, with

only a very limited number observations in between (motor vehicles and electrical

machinery). As could be expected from the correlation table, among the sectors in the

low pervasiveness part of the graph, we predominantly find sectors that also have high

science intensity and a high net multiplier. Oil refining is the only sector that is clearly

in the low pervasiveness group and has a low science intensity and net multiplier. All

other sectors with low pervasiveness have net multipliers very close to or larger than

one (and correspondingly, high science intensities, .1/2 science citation per patent).

On the other hand, and pointing to the imperfect correlation, some of the highly science

intensive sectors, those related to materials (basic metals, stone clay glass, rubber and

plastic), are among the highly pervasive ones, together with paper and printing, and

machinery. These sectors are exceptions to the general tendency that science intensive

sectors have low pervasiveness. ‘Instruments’ is the strongest exception, but also the

two basic metals sectors and stone-clay-glass. These are all sectors that have high

science intensity and corresponding high multipliers, but also high pervasiveness. Note

that ‘instruments’ is the only sector in this list of exceptions that is generally considered

as high-tech.

The second way in which we can classify the sectors in Figure 3 is by whether they are

particularly pervasive in terms of supply or use of knowledge. This can be evaluated on the

basis of whether sectors are above or below the regression line. Sectors that are above

(below) the line are particularly pervasive with regard to their knowledge supply (use).

In the group of sectors with low pervasiveness, most are relatively more pervasive in

terms of their use than in terms of their supply. Chemistry is the only exception, it is rela-

tively much more pervasive with regard to its supply than with regard to its use. In the

group of highly pervasive sectors, the sectors are more evenly distributed above or

below the regression line. Interestingly, the sectors with high science intensity (science

citations per patent) tend to be above the line, the lowly science intensive sectors below

the line.

Figure 3. Use pervasiveness versus supply pervasiveness, solid line is linear regression line
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We are thus left with a somewhat paradoxical situation. The science intensive (and often

high-tech) sectors appear to be the largest net-suppliers of knowledge (according to our net

science multiplier measure, mj . 1), but only in a limited number of cases does this come

together with a pervasive influence on a large range of other sectors. Especially in the

science intensive sectors that are also high-tech, we find a strong concentration of knowl-

edge flows to and from a rather limited number of other sectors. The highly science inten-

sive sectors that are exceptions to this rule tend to be the ones that are science intensive but

not generally considered as high-tech (instruments is the odd case).

This paradoxical relationship between science intensity and pervasiveness seems to

point to the existence of clusters of strongly technologically related sectors in the knowl-

edge system, which exchange a lot of knowledge within them, but not so much (rela-

tively) to the rest of the system. In other words, these are relatively self-sufficient

subsets of the knowledge system, due to the specialized and specific nature of knowl-

edge. In order to observe whether these clusters indeed exist, and how they relate to

the specific results on science intensity and pervasiveness that we obtain, we present a

Multi-Dimensional Scaling (MDS) analysis. MDS is often used for visualization of

multi-dimensional data. The underlying logic of this dimension reduction method is as

follows. Given a matrix that gives the similarities between pairs of entities (sectors),

we aim to find a two-dimensional map, in which the distances between the entities is con-

sistent with the ranking of the inverse similarities in the original matrix. A heuristic

algorithm is used to find such a map in an iterative way. Note that the (horizontal and

vertical) dimensions on this map have no other function than to provide a number of

degrees of freedom for the mapping (a 3D mapping would provide better results, but

the 2D map we use is easier to interpret), and they have no particular a priori interpret-

ation. The MDS analysis is based on an indicator of mutual dependency between the

sectors, which we explain in detail in the appendix. This indicator is based on our

matrices D and K.

The MDS results are in Figure 4, where we observe three distinct clusters, plus a large

group of sectors in the center of the graph. Note that the fact that two sectors are near to

each other in this map is an indication of the fact that they have intensive knowledge

exchange relationships. The three (peripheral) clusters indeed correspond closely to the

general intuition about technological relatedness. The first cluster, on the left of the

figure, includes sectors that are strongly related to ICTs (electronics, electrical machinery,

computers and office equipment, and finally instruments somewhat closer to the center).

The sectors of the second cluster (pharmaceuticals, chemistry and food products) share

an agri-bio focus. The third cluster (ferrous and non-ferrous basic metals) is metallurgy-

based. As the pervasiveness indicators suggested, the large group of sectors in the

middle shows a much weaker mutual interdependence structure, and the dependence of

each sector in the center is rather distributed. These sectors also have relations with

each of the three other clusters.

This map of technological relatedness suggests that the dual structure of the relationship

between science intensity and pervasiveness of knowledge flows is rooted in the existence

of the three clusters. Both the agri-bio and ICT clusters have strong internal knowledge

flows, and this leads to the emergence of their central sectors (e.g. pharmaceuticals in

the agri-bio cluster, electronics and computers in the ICT cluster) as net knowledge sup-

pliers. However, the influence of these central sectors is much stronger within the cluster

than in the total system, leading to their limited pervasiveness.
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The metallurgy cluster is very different. It is made up of only two sectors, which are

strongly related, but are also small, and have a more pervasive linkage to the rest of the

system. In other words, they lack the relatively strong internal dynamics found in the

other clusters, and hence appear as much more pervasive.

Summarizing, the analysis suggests a dichotomy within the group sectors that are net

suppliers of knowledge. On the one hand, there is a group of sectors that is a net supplier

of knowledge mainly as a result of very intensive connections within a specialized cluster

of technologically related sectors. This group includes two broad clusters, i.e. ICT-related

and bio-food related. On the other hand, there is a group of sectors that is both science

intensive and has intensive knowledge flows to and from a relatively large set of other

sectors. This includes a set of sectors that are traditionally seen as low-tech, but appear

as science intensive in our data (in particular the basic metals sectors and other

materials-related sectors).

7. Summary and Conclusions

We have proposed a methodology, broadly related to economic input–output analysis,

that can be used to analyze intersectoral knowledge flows. The focal point of the analysis

is the extent to which economic sectors use knowledge from the scientific domain, and

transfer this knowledge through the system of interrelated economic sectors. Previously,

the average amount of citations made to the scientific literature in a patent produced in

Figure 4. MDS map of mutual knowledge dependencies among the sectors
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a particular sector has been used as a proxy of the science intensity of R&D activities in the

sector. Our analysis provides an intersectoral insight into this indicator.

We propose measures that assess the net supply of knowledge to other sectors (i.e. the

amount of scientific knowledge supplied to other sectors minus the amount used from

other sectors, the so-called net multiplier), the knowledge self-reliance of the sectors

(i.e. the relative amount of knowledge that the sector uses from or supplies to itself),

and the pervasiveness of knowledge use and supply (i.e. the extent to which a broad

range of other sectors is served by knowledge flows from a sector, or the extent to

which knowledge is sourced from a broad range of other sectors).

We arrive at the following empirical results. First, we show that high science intensity

generally also implies net supply of knowledge to other sectors. Thus, it seems to be the

case that high science intensity (a high amount of science citations per patent) is indeed an

indication of the potential of a sector to diffuse scientific knowledge into the economic

system. Second, we show that science intensive sectors also rely to an important extent

on their own knowledge imports. The diagonal elements of our sector-by-sector knowl-

edge flow matrix carry relatively great weight in the science intensive sectors. This is a

first indication of the fact that scientific knowledge is highly specialized and specific.

Finally, we show that the number of science citations per patent is not a good indicator

for the knowledge pervasiveness of sectors. Such pervasiveness, both in terms of knowl-

edge use and supply, appears in our analysis as a dimension that is quite separate from

science intensity as measured in the traditional way. In particular, the traditional high-

tech sectors, which are only a subset of the science intensive sectors, are particularly

non-pervasive, especially so in terms of their knowledge supply to other sectors. They

tend to cater knowledge to and from a subset of sectors, including themselves. We

show that these subsets of sectors form closely interacting knowledge clusters (in particu-

lar, ICT and bio-food). Other highly science intensive sectors (materials and machinery)

are more pervasive than these high-tech sectors.

In general terms, our results thus stress two broad conclusions with regard to the econ-

omic nature of scientific knowledge. First, sectors differ to an important degree with

regard to the degree they are capable of transferring knowledge from the scientific to

the economic domain. The economy relies on a relatively small range of sectors to

achieve this transfer. At the same time, our second conclusion argues that, often, scientific

knowledge is highly specialized and specific to the sectoral context in which it is intro-

duced in the economy. When this is the case, once knowledge is introduced by the

science intensive sectors, it tends to stay within a limited cluster of technologically

related sectors.

We can speculate that the latter phenomenon is related to the specific nature of knowledge

and production relations in which knowledge is applied. How it comes about is something

that our analysis cannot explain. But it is clear from our results that the specific and

specialized nature of knowledge provides a limit to the intersectoral diffusion of it, and

this constitutes a potential source of unbalanced growth and development between economic

sectors, much in line with what is observed and analyzed in intersectoral economic analysis.
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Notes

1The latter assumption is perhaps the most controversial, as it seems to suggest a ‘linear’ view in which

science impacts on technology, but the reverse impact (from technology to science) is absent (see, for

example, Kline and Rosenberg, 1986, for a critique of such a view). Although we are sympathetic to a

more interactive view of the relationship between science and technology, we are willing to accept the

assumption. The main reason is that our data, which are patent citations, allow us to observe the inputs

of science (the scientific literature) into technology (patents), but not the reverse.
2A further complication results from the fact that often one idea is filed under different patent systems, result-

ing in two ‘varieties’ (e.g. a USPTO and an EPO) of the same patent. The procedure we use to construct our

patent citations dataset takes this into account, and standardizes such cases to the single EPO variety of

the patent. Details are given later.
3Below, we will use the term ‘patents’ to refer to patent applications, and we consider these applications

whether or not they are granted.
4Note that we do not make any direct observation about the nature of the cited science knowledge. For

example, if the chemistry sector cites a paper in electrical engineering, it will be recorded in the chemistry

column, not in the electrical machinery or electronics column. Also note that we cannot observe whether a

particular scientific paper (or other non-patent-literature) is cited more than once. Hence we treat each non-

patent-literature reference as if it were unique.
5The vector of the column sums of matrix D is i0v̂(I� A)�1. Let us call this vector of column sums 10. Then

i0v̂ ¼ v0 ¼ 1(I� A). The identity vt
j þ Sia

t
ij ¼ 1 yields v0 ¼ i0 � i0A ¼ i0(I� A): Hence,

10(I� A) ¼ v0 ¼ i0(I� A). Postmultiplying by (I 2 A)21 gives 1 ¼ i.
6This characteristic of the system is partly the result of the implicit assumption that in the citation system total

inputs in a sector are equal to total outputs. We will relax this assumption below.
7As explained above, our IPC-Isic concordance sometimes assigns a patent to multiple Isic sectors, with par-

ticular weights assigned to each of the sectors. We apply a fractional counting method for these cases. The

value assigned to cell (i,j) of the matrix is equal to the product of the weights of the sectors i and j. Because

the set of weights sums to one for both the citing and cited patent, each citation will count for one after it has

been divided over all possible combinations of citing and cited sectors.
8The working paper version is available, among others, at http://www.merit.unu.edu as Working Paper

2007–22.
9The working paper version of this paper includes a section that extensively documents the time-invariance.
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Appendix. Indicators Used for Graphing Technological Clusters

The first indicator is based on the matrix D, of which each element dij indicates the share of

industry i-specific scientific knowledge in the total stock of scientific knowledge that is

accumulated and eventually transmitted to industry j patents of year t (based on direct

and indirect knowledge flows). Thus, each column j of this matrix (which adds up to 1)

decomposes each unit of the accumulated knowledge in sector j patents into its sector-

specific knowledge components.

Based on matrix D, we define a proximity matrix that captures the pair-wise dependency

of the sectors. We call this symmetrical square matrix SimD, and the elements of this are

defined as SimDjj ¼ 1 for each sector j and for i = jas

SimDij ¼
dij

1� dii

�
d ji

1� d jj

� �1=2

Since S
19
i¼1dij ¼ 1 for each sector j, 1-djj is the share of all non-sector j-specific types

of knowledge embedded in sector j patents, and therefore dij/1-dii is the share of sector

i-specific knowledge in all non-sector j-specific knowledge embedded in sector j patents

of year t. The presence of 1–djj and 1–dii in the denominator (instead of 1) filters the

effects of the heterogeneity in self-citation rates from these pair-wise mutual dependence
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indicators, and the multiplicative nature of the indicator emphasizes the mutuality by the

simultaneous consideration of the importance of sector i-specific knowledge in sector j

patents and the importance of sector j-specific knowledge in sector i patents. Thus,

SimDij measures the extent to which sectors i and j are mutually dependent in terms of

the sector-specific knowledge they use from each other.

Analogously, we can build an alternative matrix SimK of the mutual knowledge depen-

dencies among the sectors on the basis of the matrix K. Since K is based on the output

coefficient matrix B, SimKij measures the extent to which sectors i and j are mutually

dependent in terms of the sector-specific knowledge they supply to each other. Finally,

we combine the supply and use similarity measures into a single metric, so that we

cover SimK and SimD simultaneously. This is the matrix SimDK that is defined by

SimDKij ¼ SimDij � SimKij. This is the matrix that is used as an input into the MDS

analysis.
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