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Abstract
We bring together the topics of geographical clusters and technological trajectories,
and shift the focus of the analysis of regional innovation to main technological trends
rather than firms. We define a number of inventive clusters in the US space and show
that long chains of citations mostly take place between these clusters. This is
reminiscent of the idea of global pipelines of knowledge transfer that is found in the
geographical literature. The deep citations are used to identify technological
trajectories, which are the main directions along which incremental technological
progress accumulates into larger changes. While the origin and destination of these
trajectories are concentrated in space, the intermediate nodes travel long distances
and cover many locations across the globe. We conclude by calling for more theoretical
and empirical attention to the ‘deep rivers’ that connect the ‘high mountains’ of local
knowledge production.
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1. Introduction

The concentration of specific kinds of economic activity in small and confined
geographical spaces is a long-lasting theme in the economics, business and geographical
literature (cf. Marshall, 1890; Porter, 2000; Dicken and Lloyd, 1990). The development
of new knowledge motivated by economic incentives is one of these activities that seem
to be geographically clustered in a strong way (e.g. Storper, 1993). The literature on
clusters of innovative activity suggests that a knowledge-based theory is needed to
explain the more general trend of industry agglomeration (Malmberg and Maskell,
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2002), or that the knowledge creating capacity of local clusters is decisive for growth
and the long-run survival of the cluster (Bathelt, 2005).

Traditionally, the explanation for the tendency clustering has been sought in the
broad concept of agglomeration economies, i.e. the idea that by locating close together,
firms may reduce production costs. Agglomeration economies comprise a wide variety
of factors (Dicken and Lloyd, 1990), including the availability of raw materials, the
availability of a pool of specialized labour, the possibilities for an advanced division of
labour, and, specifically for innovation clusters, knowledge spillovers that are bounded
by distance (Jaffe et al., 1993). The role of social networks and entrepreneurship has
also been stressed as a factor explaining clustering of innovation activities (Sorenson,
2003).

An important topic in the literature on innovation clusters is which specific aspects of
the nature of knowledge give rise to clustering. The tacit versus codified nature of
knowledge may explain an important part (Gertler, 2003). The part of knowledge that
cannot be codified, i.e. which is tacit, can most easily be transferred over small distances
(by face-to-face contact). This gives rise to agglomeration economies in knowledge
transfer and knowledge spillovers. The degree of complexity of knowledge has also been
suggested as a factor in innovation clustering (Sorenson et al., 2006).

The concentration of innovation activities in confined spaces may also lead to a
particular interactive structure between firms and other actors (such as research
institutes, universities, regional policymakers including investment agencies) that acts as
a system. This introduces the notion of a regional innovation system (e.g. Morgan,
2004; Lau and Lo, 2015). The crucial aspect of these systems is that institutions (in the
widest possible definition, i.e. including formal rules of the game as well as informal
customs and habits) partly determine the performance of the system. This implies that
there is a meso-structure to regional innovation systems, which surpasses the level of
decision-making in individual firms.

At an abstract level, what these approaches have in common is that they stress the
importance of knowledge flows for the generation of new knowledge. Scientists and
engineers that are engaged in the inventive process use existing knowledge to generate
new ideas. In other words, knowledge is cumulative. The combination of the cumulative
nature of knowledge and the localized nature of knowledge flows gives rise to the
existence of geographical clusters of knowledge production.

But knowledge flows are not exclusively local. This recognition gave rise to the idea
that firms use a combination of ‘local buzz and global pipelines’ (Bathelt et al., 2004)
for sourcing new knowledge as an input into their own innovation activities. The local
buzz that firms find inside the cluster consists of easily accessible knowledge resources
that are ‘just there’, like Marshall’s (1890) idea that the mysteries of trade are no longer
mysteries but are ‘in the air’. Local buzz is the typical factor behind the success of
Silicon Valley, where engineers, entrepreneurs and venture capitalists meet in bars and
restaurants (Saxenian, 1994). Global pipelines, on the other hand, are consciously
constructed and managed gateways to knowledge in different (long distance) localities.
Strategic alliances (Owen-Smith and Powel, 2004) have been analyzed as a tool for
building global pipelines. Bathelt et al. (2004) argue that the co-existence of a high level
of local buzz and access to many global pipelines provides the best environment for
economic success, both for individual firms, and for cluster regions. Bathelt and
Glückler (2011) discuss the broader consequences of local buzz and global pipelines for
the geography of innovation.
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The literature on innovation clusters, regional innovation systems or local buzz
versus global pipelines, takes the firm as the key unit for analyzing knowledge
dynamics. The knowledge that this literature is interested in is economically motivated,
and this makes firm decisions a logical starting point for the analysis. The novel
contribution of the current article is that we want to shift this focus from the firm to
technology itself. We are not so much interested in the evolution of the firm population
that invests in knowledge and that operates in local clusters, but rather in the way that
technology itself evolves, and how this evolution interacts with space. The way in which
we undertake this endeavor is to draw on an existing literature that conceptualizes
technological evolution as trajectories, and which quantifies these trajectories by using
patent citations data. We will briefly summarize the main ideas in this literature below.

Technological trajectories are accumulated chains of incremental innovations (we use
patent data to measure these innovations) that display the dominant long-run
developments in technology. Examples of technological trajectories include Moore’s
law, which defines technological progress in personal computers, or the specific types of
internal combustion engines used in motor cars. The idea of technological trajectories is
important for analyzing the main avenues along which technological change has an
impact on the economy and society at large, including the firms that are the subject of
the geographical literatures that were briefly referred to above. But when adopting a
firm perspective, as much of the literature does, the main directions of technological
change remain largely obscure.

The results of our analysis point to the importance of knowledge flows between local
innovative clusters, rather than within clusters, for the development of technological
trajectories. Although we confirm the strongly concentrated nature of knowledge
generation activities, and of patent citations (which are the main unit of observation in
our analysis), our results show that the accumulated knowledge flows between rather
than within clusters are responsible for the main directions of technological change (the
trajectories). This emphasis on between-clusters flows is reminiscent of the idea of
global pipelines, but it differs in one crucial aspect. Whereas the global pipelines that
firms use to access knowledge from far-away locations are consciously managed and
constructed, the trajectories that we find emerge from collective rather than individual
action. No single firm exclusively shapes a technological trajectory (see, e.g. the
empirical evidence in Verspagen, 2007).

The research here is a novel combination of existing research traditions that have so
far not been combined at all. One overlap that can be observed between these literatures
is the use of data on patents and patent citations, which is a (small) part of the
geographical literature (e.g. Sorenson et al., 2006; Jaffe et al., 1993), and dominates the
branch of the trajectories literature that attempt to quantify the main concepts in this
tradition (e.g. Verspagen, 2007, Mina et al., 2007; Martinelli and Nomaler, 2014).
Another overlap lies in the use of formal network methods, e.g. Owen-Smith and Powell
(2004) in the analysis of local buzz and global pipelines, while a specific form of
network theory is the bread and butter of quantifying technological trajectories.

Otherwise, the underlying units of analysis (relationships between firms and other
organization on the one hand vs. relationships between inventions on the other hand),
and the disciplinary backgrounds (geography, business studies and economics on the
one hand versus economic history and technology analysis on the other hand) are very
different between the fields of literature that we try to bridge. Fitting with the early
stage of such an ambitious combination of literatures, our analysis will be mainly
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explorative in nature. We will try to operationalize various concepts and ideas from
both literatures and bring them together in an empirical overview of the trends that are
observed in our database. We leave a fuller development of truly integrative
conceptualizations to a later stage, which we hope will be forthcoming on the basis
of the interest in the empirical facts that we provide.

Ultimately, what these empirical facts suggest is that the geographical concentration
of patent citations that has been an important topic of the literature so far, is typical of
individual small technological steps, while the main directions of technological change
(trajectories) that are comprised of many cumulative incremental steps have a much
wider spatial reach than is suggested by the analysis of patent citations by economic
geographers. The underlying reason for this broader geographical reach lies in between-
cluster knowledge flows. The collective nature of these between-cluster flows adds a new
dimension to the understanding of global pipelines that are analyzed in a part of the
geographical literature.

The rest of the article is organized as follows. In Section 2, we provide a short
overview of the relevant literature on technological trajectories, including a discussion
of the indicators used (patents and patent citations). Section 3 introduces the database,
and Section 4 presents the methods used. Section 5 is the first one where we present
novel empirical results. Here, 35 inventive clusters in the USA are presented, which will
form the main unit of analysis in the remainder of the article. Our analysis focuses
exclusively on the USA, because for this country we have data available that are broken
down to the relevant geographical unit (counties). Section 6 looks at the geographical
distribution of citations, both direct (which is the usual indicator of knowledge flow
between localities), and so-called deep citations, which are our way of identifying
technological trajectories. Section 7 looks in-depth at some of these technological
trajectories, in this case between the largest of the 35US inventive clusters. The
concluding Section 8 discusses how the evidence provided in our analysis has
implications for the spatial nature of knowledge flows and knowledge production,
and suggests directions for future research.

2. Technological trajectories and patent citations

The novelty of our research lays in the application of the idea of technological
trajectories to the idea of innovation clusters, and in particular the quantification of a
geographical dimension of technological trajectories. The notion of technological
trajectories stems from a number of authors (in particular Dosi, 1982; Sahal, 1981) who
analyze the history of technology from a strongly economic perspective. The central
idea is that the economic impact of innovation takes place through a combined process
of radical breakthroughs, incremental innovations and diffusion. This generates
‘technological paradigms’ and ‘technological trajectories’ (Dosi, 1982). By a techno-
logical paradigm, Dosi refers to a ‘model and pattern of solution of selected
technological problems, based on selected principles from the natural science and on
selected material technologies’. A paradigm is the set of technological opportunities that
emerges from a radical breakthrough, such as the application of steam power to
industrial processes, or the notion of mechanized calculations based on binary logic.

The paradigm develops along a number of specific trajectories, which are accumu-
lations of incremental improvements of a basic design. These incremental innovations
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are endogenous reactions to the specific circumstances in which the technology
develops. For example, when labor costs are high and an important part of total
production costs, the trajectory will likely take a labor-saving nature. This endogeneity
of the main technological trends also implies that technological trajectories may lock-in
to a particular direction, and ignore technological possibilities that lie further away in
technological space (e.g. Arthur, 2014). As an evolutionary process, technological
change does not optimize globally, but adapts to local circumstances.

An example of a technological trajectory is the famous ‘Moore’s Law’ that describes
the technological development of microprocessors (the law states that the number of
transistors in a single integrated circuit doubles every two years). How different
technological trajectories co-exist within the same paradigm is illustrated well by the
example of steam engines. In one particular environment, trains, a trajectory of lean but
powerful high-pressure engines emerged, while in the case of Cornish metal ore mines a
completely different trajectory of very large engines with relatively low pressure
developed (Nuvolari and Verspagen, 2009). In summary, a technological paradigm is a
set of radical breakthroughs that defines developments in the techno-economic domain
for the long run, while the technological trajectory adapts the paradigm to local
circumstances through a series of cumulative and incremental innovations. Although
made up of incremental steps, technological trajectories represent big changes over long
periods of time. It is this kind of change that we are interested in here.

Verspagen (2007) and Mina et al. (2007), based on Hummon and Doreian (1989)
pioneered a method to map technological trajectories using patent citations. Their
approach focuses on a small pre-defined field (fuel cells in the case of Verspagen, 2007;
and medical technology in the case of Mina et al., 2007), for which it identifies a number
of citation paths that capture the largest amount of knowledge flows in the field. The
current article applies the same method, with further developments, to the phenomenon
of spatial knowledge flows. Thus, our analysis makes the novel combination of
mapping trajectories of knowledge in technological space, with trajectories of
knowledge in geographical space. Moreover, instead of analyzing the trajectories in a
single technology field (which is the norm in the literature), we look at a much larger
patent dataset that covers all trajectories in all technology fields in the period under
consideration.

The quantitative analysis of technological trajectories is mostly done with patent
data, in particular with patent citations. These data are also used in the geographical
literature on the concentration of patenting activities. Jaffe et al. (1993) found that in
the USA, distance is inversely related to the probability that two patents are linked by a
citation. They control for a range of factors such as technology class and time, by
matching actual citation pairs by pairs of patents that are similar in terms of these other
variables, but do not cite each other, and then find that distance across the two patents
in the pair is smaller in the group of patent citations. This result was confirmed in many
follow-up studies, including other geographical areas, e.g. Maurseth and Verspagen
(2002) and Bottazzi and Peri (2003) for Europe.

The use of patent statistics in geographical analysis requires careful interpretation.
Griliches (1990) discusses many aspects of patents as indicators. Perhaps the most
crucial aspect of his discussion is the fact that patents are indicators of invention rather
than innovation. They show the technical possibilities, but do not guarantee
commercial relevance. In fact, many patents that are granted are not used commercially
(Giura et al., 2007). This is more of a limitation for studies that aim at analyzing the
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economic success of innovative firms, than it is for our study. As already explained, our
emphasis is on technological trajectories, which represent the main directions of
technology. Inventions are the basic unit of these trajectories, and whether or not these
inventions are actually commercialized is of secondary importance as compared to a
research design where the emphasis is on firms. That individual patents are the
incremental steps that accumulate into a trajectory is consistent with the finding by
Giura et al. (2007) and Gambardella et al. (2008), who show that most patents have
small economic value, and provide small technological steps, with only a few very
infrequent outlier patents representing radical change and large economic value.

Griliches (1990) also stresses that the extent to which firms patent their inventions
differs greatly between industries. For example, in pharmaceuticals, patents are of
crucial importance, because a product that is not patented can easily be imitated, at
lower costs, by competitors. In other industries, such as machinery, patents are less
important, because competitiveness depends more on factors that are not described in
the patent itself. Also, some inventions cannot (or could not) be patented, such as
software in some jurisdictions. As a result of this, patents are very common in some
industries, and not in others. This does affect our analysis, as the geographical patterns
of patented inventions may differ from non-patented innovations.

This literature has also addressed the issue of whether patent citations can actually be
seen as a measure of spillovers or knowledge flows. This is, again, mostly relevant for
studies that take the firm (or innovative efforts by the firm) as the main object of study.
In many of those studies, for example, when analyzing the nature and causes of
clustering of innovative efforts, the factor of interest are the flows that firms receive,
and use to generate new knowledge. The implicit assumption is that patent citations
indicate such flows, from the patent that is cited to the patent that is citing. The fact
that many citations are added by patent examiners (instead of by the inventor herself),
may be a reason in itself why the citation does not indicate an actual technology flow, as
it seems to suggest that the inventor of the citing patent did not know the cited patent.
This has been investigated, for example, by Thompson (2006) and Criscuolo and
Verspagen (2008). The conclusion seems to be that although citations are noisy
indicators, the conclusion of a geographical bias in knowledge flows stands even when
only inventor-citations are used.

For our purposes, when analyzing technological trajectories, patent citations will be
used as indicators of technological relatedness. The citing patent is related to the cited
patent, even if the inventor did not make the citation, because it is the job of the patent
examiner to judge the novelty of the patent, and citations are used for that purpose. It is
this kind of technological relatedness that the trajectory approach uses to map the main
directions of technological developments. We will use the term technology flows for
this, even though we do not imply that a flow between two firms (or inventors) has
necessarily taken place.

3. Data

We use the OECD REGPAT database, which contains patent-level information, with
geographical information about the inventors and applicants of the patent. The patents
in the REGPAT database are patents issued by the European Patent Office (EPO), or
filed under the so-called Patent Cooperation Treaty (PCT), which allows just one

1264 . Nomaler and Verspagen

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article-abstract/16/6/1259/2562968 by M

aastricht U
niversity Library user on 22 D

ecem
ber 2018



application at one of the participating offices, and get patents in multiple jurisdictions.
We focus on the USA, in particular the part of the USA located on the main North
American continent, with the exception of Alaska. The geographical entities used in the
REGPAT database are always administrative regions. In the USA, the regions are
counties. In other nations, the geographical entity tends to be much larger, which is why
we focus on the USA.

We generally count patents in a fractional way, i.e. when there is more than one
inventor, the patent is assigned to all geographical entities (regions) that the inventors
come from, using weights that are proportional to the number of times a region appears
on the inventor list. The same fractional procedure is applied to citations, which have a
citing and a cited inventor list.

We divide the total period for which we have data, which is 1973–2012, into sub-
periods of 3 years, and focus on the time span that starts with 1986–1988 and ends with
2004–2006. The EPO only started in 1979, and had relatively few patent applications in
the early years (before 1986). From 2007 to 2009, the number of patents declines due to
a backlog in processing (our dates are priority dates, as close as possible to the date of
invention). These trends and other basic information about the data will be illustrated
and discussed below in Figure 1.

4. Methods

We now proceed to summarize the methods. Many of the details are left for an annex
that is available only online as Supplementary Material.

4.1. Identifying clusters

The first step in our methodology is a workable definition to identify inventive clusters
as the main geographical unit of our analysis. The geography literature, taking the firm
as the unit of analysis, remains close to Porter’s (2000, 16) definition of a cluster as ‘. . . a
geographically proximate group of interconnected companies and associated institu-
tions in a particular field, linked by commonalities and complementarities’. Because we
focus on patented inventions instead of firms, the notions of interconnectedness,
commonalities and complementarities are substituted by the intensity of knowledge
flows, proxied by the number of citations. We define a cluster as a set of geographically
close counties among which knowledge flows are particularly strong. The emphasis on
knowledge flows in our procedure for identifying clusters not only stems from the
common notion that knowledge is an input for producing new knowledge, but also
from the idea of technological relatedness. Knowledge flows only between related
inventions, and hence we also capture the presence of related activities in the cluster.
High inventive activity is a necessary but not sufficient condition for strong knowledge
flows.

The cluster identification procedure is motivated by a broad analogy to the idea of
metropolitan spaces, in which flows of commuter movements are concentrated (in our
case, knowledge flows represent the commuter movements). The clusters are groups of
spatially contiguous counties with high patenting activity and intensive knowledge
flows between them. We look at citations and patents in the period 2001–2006. The
citation matrix, which is directed, gives the number of citations between the US
counties. We standardize all cells in this matrix as follows: csij ¼ cij=ðpipjÞ

� �
=ðc=p2Þ,
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where c is the number of citations, p the number of patents, the subscripts i and j
indicate counties, and the absence of a subscript indicates an aggregation of counties.

The standardization expresses the number of citations between a pair of counties
relative to its expected value, if citations were completely random (within the USA). In
this context, ‘random citations’ means that the relative frequency of citations between a
pair of counties is equal to the product of the shares of patents in the two counties. In
other words, the more patents there are on either side of the citations relationship, the
higher the number of expected citations is. A value lower (higher) than 1 for the
standardized citations number indicates less (more) citations than expected randomly.
We then binarize the matrix by setting all cells that are larger than 1 to 1, and all other
cells to 0. We further thin out the number of ones in this matrix by setting to 0 all cells
for which the original number of citations was less than 1, and all cells for which the
patents for either the row-county or the column-county is less than 1. The latter part of
the procedure is intended to ignore all counties that have very little inventive activity.

In this matrix, we check the geography of all cells with a value of 1. If the row- and
column counties for such a cell share a border (we use queen contiguity), we put these
counties on a preliminary list. We plot the counties on the list on a map, and check for
contiguous areas, which are defined as the clusters. There are 30 clusters that appear in
this way, of which 16 have two counties, and the largest cluster has 30 counties. We
increase the number of clusters to 35 by merging two clusters that are separated by a sea
border, and by including a number of single counties that have an exceptionally large
number of patents, and high internal knowledge flows. This is described in detail in the
online annex available as Supplementary Material.

4.2. Deep citations

The next step in the methods is to associate the clusters, or geographical space in
general, to technological trajectories. As technological trajectories are defined as
citation chains (this will be explained in more detail below), we need a way to associate
these chains to geography. For this, we will use what we call deep citations. A very
simple example is where patent A in region 1 is cited by patent B in region 2, which is in
turn cited by patent C in region 3. The knowledge flow is then A(1)� B(2)� C(3). In
terms of the start- and endpoint of this example path, we see a ‘deep’ knowledge flow
from region 1 to region 3. However, because patents usually cite more than one other
patent, we need a way to conceptualize the complex networks that arise in the real
world.

We implement the deep citations idea by looking at all patents in the last 3 years of
the period that we used to construct the clusters (2004–2006), and chart their ‘ancestry’
in terms of patents from 1986–1988. We use a calculation that was pioneered by
Martinelli and Nomaler (2014), and that is akin to genealogy. It considers cited patents
as the ‘parents’ of the citing patent, and attributes a ‘parenthood’ share of 1/n to each
cited patent, where n is the total number of citations made by the ‘child’. By multiplying
the direct ancestry shares of different generations, we trace the ancestry across
generations. For example, in the genealogy of human reproduction, the share of each
parent would be 1/2, the share of each grandparent would be 1/4, and the share of each
great-grandparent 1/8, etc. For the patent case we continue tracing back generations as
long as we have not yet reached a patent in the period 1986–1988. Obviously, this uses
both long and short citation paths, including direct citations between the two periods

1266 . Nomaler and Verspagen

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article-abstract/16/6/1259/2562968 by M

aastricht U
niversity Library user on 22 D

ecem
ber 2018

Deleted Text: &quot;
Deleted Text: &quot;
http://joeg.oxfordjournals.org/lookup/suppl/doi:10.1093/jeg/lbw035/-/DC1
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: -
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: -


(i.e. paths of length 2, which do exist but are rare). Also, not all patents from 2004 to
2006 have ancestry in 1986–1988, and we simply ignore those patents that do not have
this.

4.3. Technological trajectories in sandwich networks

The deep citations represent all citation paths that exist in geographical space, but
technological trajectories are selective important pathways from this large set. The idea
is that only those deep citation chains that embody the highest amount of knowledge
flows are representative of the main trends in ‘technology space’, i.e. the trajectories.

Our method for identifying the trajectories is based on the methods proposed by
Hummon and Doreian (1989), Verspagen (2007) and Liu and Lu (2012). The patent
citation network is directed (knowledge flows from the cited to the citing patent), and
also a-cyclical (starting at one node of the network, a path can never return to that
node). Two classes of nodes (patents) are of particular interest. A start-point is a patent
that is cited, but does not cite any patents. An endpoint is a patent in 2004–2006 that
cites other patents, but is not cited itself.

For every citation in the network, we calculate the so-called SPNP (Search Path Node
Pair) indicator proposed by Hummon and Doreian. SPNP for the citation of patent p in
patent q is counted as follows. First, count all patents in the network for which a path to
p exists (including p itself). Then count all patents that can be reached from patent q
(including q itself). SPNP is the multiplication of these two counts. It is the number of
pairs that can be formed by the patents ‘upstream’ and ‘downstream’ the citation. Next,
we identify for every start-point in the network the path (ultimately leading to an
endpoint) that maximizes the multiplication (sum of logs) of the SPNP values along the
path. Such a path is called a main path.

While we will look at deep citations (the ‘prequel’ to trajectories) at the scale of the
entire US inventive space, the specific attributes of trajectories (main paths) are hard to
summarize for the entire space, or even the entire list of 35 clusters. Therefore, we look
at pairs of the clusters. We start with the full set of patents that forms the entire network
of deep citation paths between two specific clusters, and find the main paths
(trajectories) in this network. The technological trajectories that we find are therefore
true geographical trajectories, as they run between two spatial units. For each pair of
spatial clusters, we extract the set of citations that connect the patents in period 2004–
2006 in the ‘to’ cluster to patents in 1986–1988 in the ‘from’ cluster. This large network,
which in-between the start- and endpoints of the citation paths contains many patents
not invented in either the to- or from-cluster, is what we call the sandwich network for
the specific pair of clusters that we are considering.

5. The US inventive landscape

The starting point of our analysis is the characterization of the US patenting geography
by spatial clusters, which embody the peaks in the technological landscape. Map 1
displays the number of patents per county in 2001–2006. White areas indicate zero
patents, for colored areas the number of patents increases (roughly exponentially) with
darkness. The clusters, identified by the procedure explained above, are displayed in
Map 2. Table 1 lists the clusters and gives summary statistics.
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Comparing Map 2 and Map 1, we see that there is a large correlation between the
number of patents in a county and cluster membership: almost all of the dark areas in
Map 1 are also marked in Map 2. Note that this correlation is in no way obvious, as the
cluster identification is primarily based on citation intensity, not number of patents (in
fact, the number of patents is penalized, as the benchmarking of citation intensity
divides by it). The number of patents in the table (2001–2006 period) is distributed
rather unequally over the 35 clusters. The largest cluster, i.e. the East coast, holds about
26% of the total, the smallest cluster (Nashville) just under 0.1%. The three largest
regions account for just over half of the patents, the bottom-10 clusters for just over
4%. Thus, in terms of the sheer numbers, the inventive landscape in the USA is very
peaked, with a small number of leading clusters with very high inventive activity, a
larger group of followers, and the far majority of counties (outside the clusters)
contributing very little.

6. The geography of direct and deep citations

By definition, patent citations are concentrated in the 35 clusters that were identified
above. Thus, it is not surprising that direct citations are concentrated within these
clusters. However, this is much less obvious for the deep citations (the stuff that
trajectories are made of). Because of the indirect linkages that they embody, we may
expect that the distribution of the deep citation chains is much less concentrated within
single clusters than the direct citations.

As we are interested in comparing distributions of direct and deep citations, we need
a benchmark to judge their geographical concentration. Like we did in the procedure
that identified the 35 clusters, we construct such a benchmark by referring to the idea of
random citations. In this case, it simply means that we break down the total number of
cited patents in a specific cluster into the following categories: (i) from within the cluster
itself, (ii) from other clusters (between), (iii) from US counties that are not part of a
cluster and (iv) non-US countries. The random chance that each of those categories is
cited is simply their share in total patents, and this is our benchmark.

Figure 1 displays the trends in the number of patents for the sub groups of the US
cluster regions, the other US counties, and non-US patents. The figure illustrates how
the benchmark matters. For example, the number of foreign patents is much larger than
that of US patents (the share varies between 67 and 80% over the entire period), and
hence the benchmark expects that foreign patents are the largest category in citations
made by US patents. Within the USA, the 35 clusters always take the majority of
patents: 24% of the total in 1992–1994 and 18% in 2004–2006. In interpreting the
trends in Figure 1, remember that the identification of the 35US clusters was based on
patents and citations in the sub period 2001–2006 and that deep citations go back to the
period 1986–1988.

Figure 2 compares the distribution of direct citations and deep citations. The figure
looks at citations made by (knowledge flowing into) the group of 35US clusters in the
period 2004–2006. The top panel shows the distribution of these citations over the four
categories. The sum of each color of the bars is one.

Direct citations in the short run are citations made in 2001–2006, where both the
citing and cited patents are from this period. This is the same set of citations that were
used to identify the clusters and hence we know that they are strongly spatially
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concentrated. The category of all direct citations includes the entire period 1986–2006,

and hence also includes citations over longer time spans than the first category. We see

in the top panel that all types of citations are clearly dominated by foreign sources,

followed by US clusters (between), and the cluster itself (within). Other US regions are

the smallest category.
The bottom panel of the figure invokes the benchmark, by subtracting from the

values in the top panel the expected share of citations.2 This clearly brings out the

differences between the types of citations. Direct short-run citations are very much

biased to the own cluster (within), much less so but still positively towards other US

clusters (between) and US non-cluster regions, and negatively biased towards foreign

patents. If we include longer-run direct citations, the bias for the own cluster remains

but is weaker, while that of other US clusters increases slightly, and the bias to foreign

Map 2. Thirty-five clusters, 2001–2003 and 2004–2006.

Map 1. Number of patents per county, 2001–2003 and 2004–2006 (white areas indicate zero
patents, for colored areas number of patents increases with darkness).

2 For deep citations, we also use the benchmark constructed on the basis of citations in the 1986–1988
period.
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patents become much less negative. The deep citations re-enforce this trend. Here the
bias to the own cluster is still positive, but smallest among the three citation types. The
bias towards foreign countries is still negative, but the absolute value is again smallest
among the three types. However, the bias towards other US clusters (between) is largest
and positive.

In conclusion, looking at deep citations, we find that these have a broader
geographical spread than direct knowledge flows. Although deep citations are still
biased to within-cluster flows, they are less so than direct citations. On the other hand,
deep citations are also biased, and in a stronger way than direct citations towards flows
between clusters. The technological trajectories that we are after are a subset of the deep
citation chains analyzed in this section, thus we conclude that the argument of strongly

Table 1. Clusters and summary statistics

Main city/geographical name Number of counties Number of patents

East coast (Boston, New York City & Philadelphia) 34 25,348

San Francisco 7 13,862

Los Angeles & San Diego 6 11,635

Phoenix 1 5649

Minneapolis 7 4331

Chicago 5 3547

Seattle 2 3534

Houston 5 2485

Detroit 5 2394

Durham/Chapel Hill 3 2332

Cincinnati 6 2010

Rochester 4 1743

Cleveland 5 1583

Dallas 2 1268

Atlanta 3 1250

Portland 3 1137

Austin 2 998

Montgomery/Washington 1 991

Pittsburgh 1 959

Madison, Wisconsin 2 930

Fort Lauderdale & Palm Beach 2 877

Boulder 2 845

Buffalo 2 815

Indianapolis 2 796

St. Louis 2 739

Benton 1 643

Kingsport 2 597

Salt Lake City 1 494

Schenectady &Albany 3 490

Milwaukee 2 451

Columbus 2 443

Appleton 2 390

Saginaw/Midland 2 356

Huntsville 2 226

Nashville 2 99
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Figure 2. The distribution of direct and deep citations (top panel gives share of all citations,
bottom panel is relative to the benchmark).
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Figure 1. Number of patents in the database.
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localized knowledge spillovers seems much less relevant for the case of technological
trajectories than it is for the incremental changes associated with direct citations.

7. Technological trajectories

We now make the final step of our analysis and extract the actual technological
trajectories from the entire set of deep citation chains. Because the category of flows
between and within US clusters stands out in magnitude (Figure 2), we focus on this
particular category. Results so far only consider the start- and endpoints of the deep
citation chains. We now also look at the intermediate nodes on the deep citation chains,
to be able to assess which are the main trajectories that cumulative knowledge
development takes, and how these trajectories unfold in geographical space.

Figure 3 shows an example of a main path (trajectory), in this case the one that was
identified within the East coast-to-East coast sandwich as the main path with maximum
multiplicative SPNP. The figure illustrates how the complexity of the underlying
network of patent citations can be reduced to a main path or trajectory that highlights
the main trends in technology space. The network in the figure is the network of all
patents (and citations) in the sandwich that links the start- and endpoint of this main
path. Many of the patents in this network, including those on the main path, are patents
from a different geographical location than the East coast cluster itself. The main path
itself, which consists of 19 patents, contains a 50% share of European inventors, a 30%
share of inventors from the 35US cluster regions, and a 10% share of inventors from
US non-cluster regions.

The particular main path in the figure is a trajectory in pharmaceuticals. It starts with
four patents on drugs against hypertension and heart disease, then three patents that
broaden the range of diseases (including HIV, depression, migraine and psychosis), and
finishes with a range of patents on anti-cancer drugs, in particular protein kinase
inhibitors. The trajectory has many different firms, including big pharmaceutical firms
such as DuPont, Merck and Glaxo, specific gentech firms (AmGen), and smaller
pharmaceutical firms (such as the Danish Neurosearch).

The sandwich networks are usually large networks, and hence we cannot look at all
1225 pairs formed by the 35 clusters. Instead, as a sort of case study, we focus on the 16
pairs between the largest four clusters: East coast, San Francisco, Los Angeles/San
Diego and Seattle. The 16 sandwich networks together comprise 23,060 main paths.

Figure 3. Top main path in the East coast-to-East coast sandwich network (nodes are patents,
lines are citations; main path is indicated with arrows and bold lines).
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We characterize these main paths by the share of patents from each of a set of 39
geographical entities (35US clusters; US non-cluster regions; Europe; Japan; and rest of
the world). The 35US clusters together are the largest category, with a share slightly
above one third. Europe follows in second place, with a share just under one third. The
other three categories are markedly smaller, with US non-cluster counties as the largest
(11%) of these three small categories.

In order to interpret the variety in the composition of the main paths in the sandwich
networks, we undertake a cluster analysis, which classifies the 23,060 main paths into a
small amount of groups. We use k-means cluster analysis, and settle for a division into
eight groups. Choosing eight groups (k¼ 8) is somewhat arbitrary, but we considered
alternative groups (k¼ 2.10). Less than eight groups forces some of the interesting
between-group heterogeneity that will be discussed below into a single group, while
k¼ 9 of 10 does not add qualitatively different insights on the role of US cluster regions,
which will be the main focus of our discussion. We have one large group (about one-
third of all main paths), which is group 2. Together with the next two largest groups (1
and 4), this group covers almost two thirds of all main paths. The remaining 5 groups
vary between 9% and 5% of the total.

Figure 4 characterizes the groups in terms of their composition. Remember that the
full detail of the 35US clusters, plus the 4 other categories, was used to classify the main
paths (i.e. to form the groups). Figure 4 displays the mean scores in each of the five
categories in the group, with the sample average subtracted. Hence a positive value
indicates specialization into this particular category.

Group 2 is the one that has the most homogenous distribution over the five
categories. It is most clearly specialized in European contributions to the main paths,
but much less so than group 1. It is also slightly specialized in US non-cluster regions,
but much less so than group 8. The other groups, including groups 1 and 8, are
specialized in only a single category. In group 1, which is one of the larger groups, this is

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

US clusters US non-clusters Japan Europe Rest of the world

Figure 4. Group characteristics in the cluster analysis (deviations from total sample means).
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Europe. In group 3, a small group, we have dominance of Japanese patents, in group 6
(also small) dominance of patents from the rest of the world. Groups 4, 5 and 7 are
dominated by US cluster regions. Of this, group 4 is relatively large, the other two are
small. Group 8 is dominated by US non-cluster counties.

The three groups that are specialized in US cluster regions (4, 5 and 7) can further be
described by looking at which clusters play a role. We define an indicator that is akin to
the revealed comparative advantage indicator to investigate this. It is defined as
Rij ¼ 100� Sij=Si, where i (1�35) indicates a cluster region, j (4, 5 or 7) is a group from
the cluster analysis, Sij is the share of cluster i in the total contributions of the 35
clusters to the main paths in the group j, and Si is the share of cluster i in the
contribution of the 35 clusters to all (23,060) main paths. A value above (below) 100
indicates a relatively high (low) contribution of the cluster to the group.

Map 3 displays the profile (R values) of group 4, which is the largest of the three US
cluster-based groups. The blue colour in the map indicates clusters that have a strongly
below average contribution to this group (R575), cyan indicates 755R5100, i.e. a
mildly below average contribution. The other colours indicate R4100, with yellow
1005R5150, orange 1505R5200 and red R4200.

The map shows that group 4 is strongly influenced by the large East coast cluster. It is
the only red cluster on the map. There are only 6 other clusters with R4100 in this
group, based in the East side of the country. The entire West coast and most of the
Midwest and South have R5100. We can conclude that this is a rather specialized
group, in which main paths are strongly concentrated in relatively few clusters. Besides
the East coast clusters, the clusters in this group with R4100 are small clusters, i.e. they
are low on the list in Table 1. The yellow clusters are Durham/Chapel Hill (ranked 10 in
the table), Atlanta (rank 15) and Milwaukee (rank 30). The orange clusters are Buffalo
(rank 23), Huntsville (rank 34) and Nashville (rank 35). It seems that these smaller
clusters are strongly dependent on the large East coast cluster in terms of being present
on the main paths that connect our large clusters in the US inventive system.

Similar maps for groups 5 and 7 confirm the impression from Map 3. Thus, the
evidence suggests that these main paths themselves are clustered, instead of consisting
of evenly distributed geographical patterns. The main trajectories of knowledge

Map 3. Specialization profile of group 4.
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development are like selective rivers unfolding in space, rather than like the wind that
blows broadly in a wide circle. The clusters of the US inventive landscape each play a
particular role in these deep rivers of main technological trends.

8. Discussion and conclusions

We looked at the geography of technological change, taking a technology perspective
rather than the usual perspective of organizations (firms). We use patents and patent
citations as the indicator of technological change. Previous findings in the geographical
literature have focused primarily on the strong geographical concentration of patent
citations (Jaffe et al., 1993), which is in line with the idea that innovation takes place
mostly in spatial clusters (cf. Malmberg and Maskell, 2002). Our analysis confirms this
strong geographical concentration of patent citations, but in our technological
perspective, we interpret it as applying mainly to incremental steps in technological
space.

The more substantial part of our analysis looked at accumulated sequences of these
incremental direct citations. We call these long-run citation chains deep citations, and we
find that these deep citations are especially strong between US incentive clusters, even
though within-cluster flows are also important in deep citations (but less so than between-
cluster flows). The deep citation chains, by their accumulation of incremental steps, also
cover longer technological distances, i.e. they represent cumulative change along which
technology takes big steps in the long run. We use methods from a separate literature that
uses network theory to map the major trajectories in technological space as the citation
chains that attract most knowledge flows in the network of direct citations. By identifying
those deep citation chains—the main paths—that capture the largest flows of knowledge,
we are able to focus on the particular trajectories of knowledge development that embody
the strongest long-run forces of technological change.

Our main finding is that technological trajectories develop between innovation clusters
rather than exclusively within clusters. This is akin to the idea that firms in clusters
construct and manage global pipelines for knowledge transfer in addition to the local
buzz that they find in their own cluster (Bathelt et al., 2004). But contrary to the global
pipelines, technological trajectories are a result of collective efforts of firms (and other
organizations), and they develop in an evolutionary way as accumulated local change,
without a top-down design process. In such an evolutionary process, the forces of change
do not likely lead to an outcome that is fully optimal in the sense that economic theory
usually assumes. Instead, we may see situations in which firms and other organizations
are adapted to local circumstances, including the strategies of their competitors. This may
well lead to a situation of lock-in, in which inventors in a particular combination of local
clusters jointly focus on a particular technological direction, whereas technological
solutions may also be found in other parts of technological space.

The combination between the regional cluster literature and the technological
trajectories literature is a novel one. Our results suggest that the geographical dimension
is important for the construction of technological trajectories. When a technological
trajectory develops, it does so along a specific spatial trajectory. This spatial trajectory
mostly consists of chains of patents from inventive clusters. In other words, the results
from the technological cluster literature have a strong relevance for the analysis of
technological trajectories. The way in which firms use local buzz and build global
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pipelines will have a strong influence on how trajectories develop. On the other hand,
the development of the technological trajectories that the firm is interested in will also
determine how it builds its global pipelines of knowledge transfer, and where it will seek
local buzz.

This raises questions about firm behavior in the field of technological choice. Which
kind of technological resources do firms seek locally, and which ones are sources
through global pipelines? Can we even generalize about the answers to these questions,
or do the answers differ between geographical locations (clusters)? In general, we
suggest that theoretical and empirical work on the geography of innovation takes into
account the idea of technological trajectories to develop a more coherent framework for
understanding the geographical dimension of technology. For example, the narrative
often goes that many of the important trends in ICT come from Silicon Valley, but our
results suggest that these trajectories have a much wider geographical base, and are
influenced by the global location decisions of firms.

Such a combination of theories of geography and technology may also yield new
insights into theorizing about technology itself (e.g. Arthur, 2014). It is likely that
technological specialization will play a large role in such a theoretical framework. Because
of computational constraints, we have been unable to investigate the role of this factor.
However, it is clear that knowledge flows are dependent on technical relations between
technology fields, and hence the technological specialization pattern of a cluster will
determine from where it can receive the major parts of its technology inflows.

The technological profile of an innovation cluster is, however, not an exogenous
factor. Instead, it emerges historically as a result of interaction between local and
external actors (inventors, firms, research institutes), and the progress of technological
trajectories. Therefore, the technological specialization pattern of inventive clusters will
never be the ultimate explanation for the spatial concentration of deep citations. It is a
factor that needs to be explained itself, interwoven with the explanation of the
concentration of deep citations itself.

Reasoning in the tradition of the innovation clusters literature and the technological
trajectories literature would suggest, in our view, that path dependency and lock-in play
a role in this process. Innovation clusters depend on interaction (locally and over longer
distances) that re-enforces itself by repetition and adaptation. Actors in a local cluster
develop routines that become highly specific to their situation. By evolutionary
selection, these routines are optimized to become a local fitness maximum, which is
specific to the local cluster. Knowledge exchange between local actors and with a
selective number of actors outside the local cluster becomes a crucial part of the inputs
into the cluster. Obviously, this is a dynamic process, in which change is the norm rather
than static equilibrium. Similarly, progress along technological trajectories is cumula-
tive and path dependent. Our analysis suggests that the explanation of regional
innovation clusters, their interaction, and of technological trajectories may benefit from
more theoretical and empirical linkages between the regional innovation literature and
the idea of technological trajectories.

Supplementary material

Supplementary data for this paper are available at Journal of Economic Geography
online.
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